
Python with Parzival

Mr. Armstrong

2025-07-18

Table of contents

Cover 1

Preface 3
About the Book . 3
The Legend of Parzival . 3
Python Lessons . 4
Assignments . 4
Final Thoughts . 5

1 Announcing the Quest: Your First Steps in Python 7
1.1 The Magical print() Function . 7
1.2 The Art of Comments: Leaving Trail Marks . 8
1.3 The Nature of Strings: Magic Words . 8
1.4 The Power of Concatenation: Combining Magic Words . 9
1.5 Combining Our Powers: A Grand Announcement . 10
1.6 Common Bugs to Watch Out For . 10
1.7 Conclusion and Further Resources . 11

2 The Language of Chivalry: Mastering Escape Characters 13
2.1 What are Escape Characters? . 13
2.2 The Most Common Escape Characters . 13
2.3 The Magic of \n: Creating New Lines . 13
2.4 The Power of \t: Adding Tabs . 14
2.5 Quoting Within Quotes: \" and \' . 14
2.6 The Elusive Backslash: \\ . 14
2.7 Combining Escape Characters: The Ultimate Spell . 15
2.8 Common Bugs to Watch Out For . 15
2.9 Conclusion and Further Resources . 16

3 Parzival’s Identity: The Magic of Variables 17
3.1 What are Variables? . 17
3.2 Creating and Using Variables . 17
3.3 Changing Variable Values . 18
3.4 Variable Naming Rules . 18
3.5 Practice Time: Create Your Hero . 19
3.6 Common Bugs to Watch Out For . 19
3.7 Conclusion and Further Resources . 20

iii

Table of contents

4 The Power of Input: Interacting with the User 21
4.1 What is input()? . 21
4.2 How input() Works . 21
4.3 Using input() with Different Types of Data . 22
4.4 Creating an Interactive Story . 22
4.5 Common Bugs to Watch Out For . 23
4.6 Conclusion and Further Resources . 23

5 Debugging Basics: Unraveling the Mysteries of Code 25
5.1 What is Debugging? . 25
5.2 Types of Errors . 25
5.3 Reading Error Messages . 25
5.4 Basic Debugging Techniques . 26
5.5 Debugging in VSCode . 26
5.6 Practice Time: Debug These Spells . 27
5.7 Common Bugs to Watch Out For . 27
5.8 Conclusion and Further Resources . 27

6 Python Data Types: Strings and Numeric Types 29
6.1 The Two Realms: Strings and Numbers . 29
6.2 Strings: The Realm of Text . 29
6.3 Numeric Types: The Realm of Numbers . 29
6.4 The type() Function: Identifying the Species . 30
6.5 Transformation Spells: Converting Between Types . 30
6.6 str(): Turning Anything into a String . 30
6.7 int(): Converting to Integers . 30
6.8 float(): Converting to Floating-Point Numbers . 31
6.9 Practical Magic: Using These Powers . 31
6.10 Practice Your Magic . 31
6.11 Common Bugs to Watch Out For . 32
6.12 Conclusion . 32
6.13 Further Resources . 32

7 Arithmetic Operators: The Magic of Mathematical Operations 33
7.1 The Basic Arithmetic Spells . 33
7.2 Addition (+) . 33
7.3 Subtraction (-) . 34
7.4 Multiplication (*) . 34
7.5 Division (/) . 34
7.6 Floor Division (//) . 34
7.7 Modulus (%) . 35
7.8 Exponentiation (**) . 35
7.9 Order of Operations . 35
7.10 Combining Arithmetic with Assignment . 36
7.11 Practical Magic: A Potion Brewing Calculator . 36

iv

Table of contents

7.12 Practice Your Arithmetic Magic . 37
7.13 Common Bugs to Watch Out For . 37
7.14 Conclusion . 38
7.15 Further Resources . 38

8 String Wizardry: Mastering F-Strings 39
8.1 What are F-Strings? . 39
8.2 The Power of Expressions in F-Strings . 39
8.3 Formatting Options . 40
8.4 Multiline F-Strings . 40
8.5 Practice Time: Casting Your Own F-String Spells . 41
8.6 Common Bugs to Watch Out For . 42
8.7 Conclusion and Further Resources . 42

9 The Grail Castle Test: Mastering ‘If’ Statements 43
9.1 What are Conditional Statements? . 43
9.2 The Structure of an ‘If’ Statement . 43
9.3 Your First ‘If’ Statement . 44
9.4 Using Comparison Operators in Conditions . 44
9.5 Combining Conditions with Logical Operators . 45
9.6 Practice Your ‘If’ Statement Magic . 45
9.7 Common Bugs to Watch Out For . 46
9.8 Conclusion and Further Resources . 46

10 The Grail Castle Test: Mastering ‘Elif’ and ‘Else’ Statements 49
10.1 Introducing ‘Else’: The Alternative Path . 49
10.2 The Power of ‘Elif’: Multiple Conditions . 50
10.3 Combining ‘If’, ‘Elif’, and ‘Else’ with Logical Operators . 50
10.4 The Importance of Order in ‘Elif’ Statements . 51
10.5 Practice Your ‘Elif’ and ‘Else’ Magic . 52
10.6 Common Bugs to Watch Out For . 53
10.7 Conclusion and Further Resources . 53

11 The Grail Castle’s Labyrinth: Mastering Nested Conditional Statements 55
11.1 What are Nested Conditional Statements? . 55
11.2 A Simple Example: The Enchanted Forest . 55
11.3 Complex Nested Structures: The Dragon’s Lair . 56
11.4 The Importance of Indentation . 57
11.5 Combining Nested Conditionals with Logical Operators 57
11.6 Practice Your Nested Conditional Magic . 58
11.7 Common Bugs to Watch Out For . 59
11.8 Conclusion and Further Resources . 59

12 Python Lists: Creating Your Inventory 61
12.1 What is a List? . 61

v

Table of contents

12.2 Creating a List . 61
12.3 Accessing List Elements . 62
12.4 Negative Indexing . 62
12.5 Getting the Length of a List . 62
12.6 Checking if an Item is in the List . 63
12.7 Changing List Elements . 63
12.8 Practice Time: Manage Your Inventory . 64
12.9 Common Bugs to Watch Out For . 64
12.10 Conclusion and Further Resources . 65

13 Python Lists: Modifying Your Inventory 67
13.1 Adding Elements to a List . 67
13.2 The append() Method: Adding to the End . 67
13.3 The insert() Method: Adding at a Specific Position . 67
13.4 Removing Elements from a List . 68
13.5 The remove() Method: Removing a Specific Item . 68
13.6 The pop() Method: Removing and Returning an Item . 68
13.7 Extending a List . 68
13.8 Clearing a List . 69
13.9 Counting Occurrences of an Item . 69
13.10 Finding the Index of an Item . 69
13.11 Sorting a List . 70
13.12 Reversing a List . 70
13.13 Practice Time: Manage Your Magical Armory . 70
13.14 Common Bugs to Watch Out For . 71
13.15 Conclusion and Further Resources . 72

14 Python Lists: The Art of Slicing 73
14.1 What is List Slicing? . 73
14.2 Basic Slicing . 73
14.3 Omitting Start or End Indices . 74
14.4 Negative Indices in Slices . 74
14.5 Slicing with a Step . 74
14.6 Reversing a List with Slicing . 75
14.7 Creating a Copy of a List . 75
14.8 Modifying Lists with Slices . 75
14.9 Practice Time: Master the Art of Slicing . 76
14.10 Common Bugs to Watch Out For . 76
14.11 Conclusion and Further Resources . 77

15 Python Tuples: Immutable Treasures 79
15.1 What are Tuples? . 79
15.2 Creating Tuples . 79
15.3 Accessing Tuple Elements . 80
15.4 Tuple Packing and Unpacking . 80

vi

Table of contents

15.5 Tuple Methods . 81
15.6 When to Use Tuples Instead of Lists . 81
15.7 Practice Time: Master the Art of Tuples . 82
15.8 Common Bugs to Watch Out For . 82
15.9 Conclusion and Further Resources . 83

16 The Magic of Merlin: Importing Libraries - The Random Library 85
16.1 What are Python Libraries? . 85
16.2 The import Spell: Accessing Library Powers . 85
16.3 Exploring the Random Library . 86
16.4 1. randint(): Generating Random Integers . 86
16.5 2. choice(): Randomly Selecting from a List . 86
16.6 3. shuffle(): Randomly Reordering a List . 86
16.7 The from ... import Incantation: Selecting Specific Spells 87
16.8 Renaming with the as Charm: Creating Aliases . 87
16.9 Practice Your Library Magic . 87
16.10 Common Bugs to Watch Out For . 88
16.11 Conclusion and Further Resources . 88

17 The Magic of Merlin: Built-in Math Operations and the Math Library 89
17.1 Python’s Built-in Math Operations . 89
17.2 min(): Finding the Minimum Value . 89
17.3 max(): Finding the Maximum Value . 90
17.4 round(): Rounding Numbers . 90
17.5 The Math Library . 91
17.6 Importing the Math Library . 91
17.7 math.pi: The Pi Constant . 91
17.8 math.floor(): Rounding Down . 91
17.9 math.ceil(): Rounding Up . 91
17.10 math.sqrt(): Square Root . 92
17.11 Practical Magic: Combining Built-in Operations and the Math Library 92
17.12 Practice Your Math Magic . 92
17.13 Common Bugs to Watch Out For . 93

18 The Round Table: Basic Sorting in Python 95
18.1 1. The sorted() Function: Creating a New Sorted List . 95
18.2 2. The .sort() Method: Sorting a List in Place . 95
18.3 3. Reverse Sorting: From Z to A . 96
18.4 Sorting Numbers . 97
18.5 Practice Your Sorting Magic . 97
18.6 Common Bugs to Watch Out For . 98

19 Decoding Ancient Texts: String Methods (Part 1) 99
19.1 1. The lower() Method: Transforming to Lowercase . 99
19.2 2. The upper() Method: Transforming to Uppercase . 99

vii

Table of contents

19.3 3. The title() Method: Capitalizing Words . 100
19.4 Combining String Methods . 100
19.5 Checking User Input Regardless of Case . 101
19.6 Creating a Simple Text Formatter . 101
19.7 Practice Your String Magic . 101
19.8 Common Bugs to Watch Out For . 102

20 Decoding Ancient Texts: String Methods (Part 2) 103
20.1 1. The strip() Method: Trimming Whitespace . 103
20.2 2. The split() Method: Breaking Strings Apart . 104
20.3 Combining strip() and split() . 105
20.4 Practice Your String Magic . 105
20.5 Common Bugs to Watch Out For . 106

21 Decoding Ancient Texts: The Art of Error Handling 107
21.1 What are Errors in Python? . 107
21.2 The Try/Except Structure . 108
21.3 Handling Specific Error Types . 108
21.4 Multiple Except Blocks . 109
21.5 Using Try/Except with String Methods . 109
21.6 Practice Time: Error Handling Quests . 110
21.7 Common Bugs to Watch Out For . 111
21.8 Conclusion and Further Resources . 111

22 The Try/Except Structure: Catching Errors 113
22.1 The ‘as’ Keyword: Capturing Error Messages . 113
22.2 The Raise Statement: Creating Our Own Errors . 114
22.3 Common Exception Types . 114
22.4 Practice Time: Error Handling Quests . 115
22.5 Common Bugs to Watch Out For . 116
22.6 Conclusion and Further Resources . 116

23 For Loops: Parzival’s Repetitive Quests 117
23.1 What is a For Loop? . 117
23.2 Your First For Loop: Knocking on Castle Doors . 117
23.3 Looping Through Lists . 118
23.4 The Range Function: Parzival’s Training Regimen . 118
23.5 The Power of Accumulation: Counting Parzival’s Treasure 119
23.6 Practice Time: Your For Loop Quests . 120
23.7 Common Bugs to Watch Out For . 121
23.8 Conclusion and Further Resources . 121

24 While Loops: Parzival’s Persistent Quests 123
24.1 What is a While Loop? . 123
24.2 Your First While Loop: Parzival’s Grail Quest . 123

viii

Table of contents

24.3 While Loops with Counter Variables . 124
24.4 The Power of User Input in While Loops . 125
24.5 The ‘Break’ and ‘Continue’ Statements . 125
24.6 Practice Time: Your While Loop Quests . 126
24.7 Common Bugs to Watch Out For . 127
24.8 Conclusion and Further Resources . 127

25 Nested Loops: Parzival’s Complex Quests 129
25.1 What are Nested Loops? . 129
25.2 Nested For Loops: Exploring the Dungeon . 129
25.3 Nested While Loops: The Training Montage . 130
25.4 Combining For and While Loops: The Gauntlet Challenge 131
25.5 Practice Time: Your Nested Loop Quests . 132
25.6 Common Bugs to Watch Out For . 133
25.7 Conclusion and Further Resources . 133

26 Advanced Debugging: Mastering the Art of Code Divination 135
26.1 The VSCode Debugger: Your Crystal Ball . 135
26.2 Debugging in Action: Parzival’s Treasure Hunt . 135
26.3 Advanced Techniques: Scrying the Code Streams . 136
26.4 Debugging Loops and Conditionals: Untangling the Threads of Fate 136
26.5 Best Practices: The Code Mage’s Wisdom . 137
26.6 Practice: Debug These Enchanted Scripts . 137
26.7 Common Debugging Pitfalls: Traps for the Unwary . 138
26.8 Conclusion and Further Enchantments . 138

27 Python Functions: Knightly Skills 139
27.1 What are Functions? . 139
27.2 Defining a Function: Crafting Your Special Move . 139
27.3 Calling a Function: Using Your Special Move . 140
27.4 The Power of Reusability . 140
27.5 Functions as Code Organizers . 140
27.6 Practice Time: Craft Your Own Functions . 141
27.7 Common Bugs to Watch Out For . 142
27.8 Conclusion and Further Resources . 142

28 Python Functions: The Power of Parameters 143
28.1 What are Parameters? . 143
28.2 Creating Functions with Parameters . 143
28.3 Multiple Parameters . 144
28.4 Default Parameters . 144
28.5 Keyword Arguments . 145
28.6 Practice Time: Your Parameter Quests . 145
28.7 Common Bugs to Watch Out For . 146
28.8 Conclusion and Further Resources . 146

ix

Table of contents

29 Python Functions: Mastering Return Values 149
29.1 What are Return Values? . 149
29.2 The return Statement . 149
29.3 Functions Without Return Values . 150
29.4 Returning Multiple Values . 150
29.5 Using Return Values in Conditional Statements . 151
29.6 Practice Time: Your Return Value Quests . 151
29.7 Common Bugs to Watch Out For . 152
29.8 Conclusion and Further Resources . 153

30 Python Functions: Understanding Variable Scope 155
30.1 What is Variable Scope? . 155
30.2 Local Scope . 155
30.3 Global Scope . 156
30.4 The global Keyword . 156
30.5 Nested Functions and Nonlocal Variables . 157
30.6 Best Practices for Using Scope . 157
30.7 Practice Time . 157
30.8 Common Bugs to Watch Out For . 158
30.9 Conclusion and Further Resources . 158

31 The Grail’s Secrets: Creating and Accessing Dictionaries 161
31.1 What is a Dictionary? . 161
31.2 Creating Your First Dictionary . 161
31.3 Accessing Values in a Dictionary . 162
31.4 Dictionary Keys and Values . 162
31.5 Handling Missing Keys . 163
31.6 Nested Dictionaries . 163
31.7 Practice Time: Your Dictionary Quests . 164
31.8 Common Bugs to Watch Out For . 164
31.9 Conclusion and Further Resources . 165

32 The Grail’s Secrets: Adding and Changing Dictionary Items 167
32.1 Adding New Items to a Dictionary . 167
32.2 Changing Existing Items . 168
32.3 Modifying Numerical Values . 168
32.4 Adding and Modifying Items in Nested Dictionaries . 169
32.5 Using Dictionary Methods to Add and Update Items . 169
32.6 Practice Time: Modify Your Dictionaries . 170
32.7 Common Bugs to Watch Out For . 170
32.8 Conclusion and Further Resources . 171

33 The Grail’s Secrets: Removing Items from Dictionaries 173
33.1 The pop() Method: Removing and Returning Items . 173
33.2 The del Statement: Direct Item Removal . 174

x

Table of contents

33.3 The clear() Method: Removing All Items . 174
33.4 Removing Items from Nested Dictionaries . 175
33.5 Pop with Default Value . 176
33.6 Practice Time: Dictionary Removal Practice . 176
33.7 Common Bugs to Watch Out For . 177
33.8 Conclusion and Further Resources . 177

34 The Grail’s Secrets: Dictionary Methods and the ‘in’ Operator 179
34.1 The ‘in’ Operator: Checking for Keys . 179
34.2 Dictionary Methods: Getting Keys, Values, and Items . 180
34.3 The keys() Method: Getting All Keys . 180
34.4 The values() Method: Getting All Values . 180
34.5 The items() Method: Getting Key-Value Pairs . 181
34.6 The get() Method: Safe Dictionary Access . 181
34.7 The setdefault() Method: Setting Values Only if Key is Missing 181
34.8 Practical Examples . 182
34.9 Practice Time: Using Dictionary Methods . 182
34.10 Common Bugs to Watch Out For . 183
34.11 Conclusion and Further Resources . 184

35 Why Do We Need Classes? A Tale of Adventure and Code 185

36 Character Classes: Creating Your Own Types 189
36.1 What is a Class? . 189
36.2 Creating Objects from Classes . 189
36.3 Adding More Attributes . 190
36.4 The __init__ Method and self . 190
36.5 Creating Multiple Classes . 191
36.6 Practice Time: Create Your Classes . 192
36.7 Common Bugs to Watch Out For . 192
36.8 Conclusion and Further Resources . 193

37 Character Actions: Adding Behaviors with Methods 195
37.1 What are Methods? . 195
37.2 Methods with Parameters . 196
37.3 Methods that Change Object State . 196
37.4 Methods that Return Values . 197
37.5 A Complete Character Class . 198
37.6 Practice Time: Adding Methods to Your Classes . 199
37.7 Common Bugs to Watch Out For . 200
37.8 Conclusion and Further Resources . 201

38 Class Inheritance: Creating Character Specializations 203
38.1 What is Inheritance? . 203
38.2 Creating Different Character Types . 204

xi

Table of contents

38.3 Overriding Parent Methods . 205
38.4 Using super() in Methods . 206
38.5 Practice Time: Class Inheritance . 207
38.6 Common Bugs to Watch Out For . 208
38.7 Conclusion and Further Resources . 209

39 Advanced Class Concepts: The Deeper Mysteries 211
39.1 Class Attributes vs Instance Attributes . 211
39.2 Class Methods . 212
39.3 Static Methods . 213
39.4 Properties: Smart Attributes . 214
39.5 Putting It All Together . 215
39.6 Practice Time: Advanced Class Features . 217
39.7 Common Bugs to Watch Out For . 217
39.8 Conclusion and Further Resources . 219

40 The Beginning of Your Game Development Quest 221
40.1 What is Pyxel and Why Use It? . 221
40.2 Basic Setup and Initialization . 222

40.2.1 Installing Pyxel . 222
40.2.2 Your First Pyxel Program . 222

40.3 The Game Loop: The Heart of Your Game . 223
40.4 Understanding Input Handling in Pyxel . 224

40.4.1 The Difference Between btn and btnp . 224
40.4.2 Common Input Constants . 225

40.5 Object-Oriented Approach in Pyxel . 225
40.6 Practice Time: Your First Pyxel Challenge . 226
40.7 Common Bugs to Watch Out For . 227
40.8 Conclusion and Resources for Further Quests . 227

41 Mapping Your Game World: Colors and Coordinates 229
41.1 The Magic Palette: Pyxel’s 16 Colors . 229

41.1.1 Pro Tip: Choosing the Right Color for Text . 231
41.2 The Cartographer’s Grid: Pyxel’s Coordinate System . 231
41.3 Combining Colors and Coordinates: A Simple Drawing . 232
41.4 Practice Time: Your Color and Coordinate Quest . 233
41.5 Common Bugs to Watch Out For . 235
41.6 Conclusion and Resources for Further Exploration . 235

42 The Artist’s Tools: Drawing Primitives and Shapes 237
42.1 What are Drawing Primitives? . 237
42.2 The Point: The Smallest Unit of Art . 237
42.3 The Line: Connecting the Dots . 238
42.4 The Rectangle: Building Blocks of Games . 239
42.5 The Circle: Perfect Rounds . 240

xii

Table of contents

42.6 The Triangle: Adding Dimension . 241
42.7 Text: The Power of Words . 242
42.8 Creating a Simple UI with Shapes and Text . 243
42.9 Practice Time: Your Drawing Primitive Quest . 245
42.10 Common Bugs to Watch Out For . 245
42.11 Conclusion and Resources for Further Mastery . 246

43 The Power of Imagery: Loading and Using Sprites 247
43.1 What are Sprites and Why Do We Need Them? . 247
43.2 The Pyxel Image Bank: Your Sprite Storage . 247
43.3 Loading Images: Two Simple Methods . 248

43.3.1 Method 1: Loading an External Image File . 248
43.3.2 Method 2: Using the Pyxel Editor . 248

43.4 Displaying Sprites with blt() . 249
43.5 Moving Sprites: Bringing Your Game to Life . 250
43.6 Transparency in Sprites . 251
43.7 Practice Time: Your First Sprite Quest . 251
43.8 Common Bugs to Watch Out For . 252
43.9 Conclusion and Resources for Further Exploration . 253

44 Mastering the Image Bank: Organizing Your Game’s Visual Assets 255
44.1 Organizing Your Image Bank Effectively . 255
44.2 Creating a Sprite Atlas: Named Sprites for Easy Reference 257
44.3 Working with Multiple Image Banks . 259
44.4 Practice Time: Image Bank Organization Quest . 260
44.5 Common Bugs to Watch Out For . 261
44.6 Conclusion and Resources for Further Exploration . 261

45 Bringing Your World to Life: Basic Sprite Movement 263
45.1 Why Movement Matters . 263
45.2 The Basic Movement Model . 263
45.3 Keyboard-Controlled Movement . 265
45.4 Keeping Sprites Within Bounds . 266
45.5 Movement with Acceleration and Deceleration . 268
45.6 Moving Multiple Sprites: Following Patterns . 270
45.7 Using blt() Instead of Shapes . 272
45.8 Creating a Simple Game: Collect the Coins . 274
45.9 Practice Time: Your Movement Quest . 276
45.10 Common Bugs to Watch Out For . 277
45.11 Conclusion and Resources for Further Exploration . 277

46 Mastering Player Input: Keyboard, Mouse, and Gamepad 279
46.1 Why Input Matters: The Player’s Connection . 279
46.2 Keyboard Input: The Classic Control Scheme . 279

46.2.1 btn() vs btnp(): Understanding the Difference . 279

xiii

Table of contents

46.2.2 Key Constants: The Magic Words . 281
46.2.3 Advanced Keyboard Techniques . 281

46.3 Mouse Input: Point and Click Adventures . 282
46.3.1 Enabling Mouse Input . 282
46.3.2 Reading Mouse Position and Clicks . 282
46.3.3 Button Detection: Clicking on UI Elements . 284

46.4 Gamepad Input: The Console Experience . 286
46.4.1 Reading Gamepad Buttons . 286
46.4.2 Gamepad Constants . 286
46.4.3 Two-Player Example . 287

46.5 Practice Time: Your Input Control Quest . 288
46.6 Common Bugs to Watch Out For . 289
46.7 Conclusion and Resources for Further Exploration . 290

47 The Art of Collision Detection: Making Your Game Interactive 291
47.1 What is Collision Detection and Why Does It Matter? . 291
47.2 Types of Collision Detection . 291
47.3 Rectangle Collision: The Workhorse of Game Development 292
47.4 Visualizing Collision Rectangles . 294
47.5 Circle Collision: Perfect for Round Objects . 297
47.6 Mixed Collision Types: Circle-Rectangle Collision . 300
47.7 Using Collision Detection in a Game: Coins and Obstacles 303
47.8 Implementing Tile-Based Collision . 306
47.9 Collision Response: What Happens After a Collision? . 309

47.9.1 Sliding Along Walls . 309
47.9.2 Pushing Objects . 312

47.10 Performance Considerations . 315
47.10.1 1. Spatial Partitioning . 315
47.10.2 2. Broad Phase and Narrow Phase . 315
47.10.3 3. Collision Culling . 316
47.10.4 4. Custom Collision Shapes . 316

47.11 Practice Time: Your Collision Detection Quest . 316
47.12 Common Bugs to Watch Out For . 318
47.13 Conclusion and Resources for Further Exploration . 318

48 Bringing Sprites to Life: Animations and Flipping 321
48.1 What are Sprite Animations? . 321
48.2 Frame-Based Animation: The Basics . 321
48.3 Creating a Walking Character Animation . 323
48.4 The Magic of Flipping Sprites . 325
48.5 Multi-directional Character with Animations . 325
48.6 Creating an Animation Manager . 328
48.7 Advanced Techniques . 331

48.7.1 1. Variable Animation Speed . 331
48.7.2 2. Tinting or Color Effects . 331

xiv

Table of contents

48.7.3 3. Transition Animations . 331
48.8 Practice Time: Animate Your Game World . 331
48.9 Common Bugs to Watch Out For . 333
48.10 Conclusion and Resources for Further Animation Learning 333

49 Pyxel Commands Cheatsheet (Lessons 15a-15f) 335
49.1 Initialization and Core Functions . 335
49.2 Input Handling . 335
49.3 Constants for Keys . 335
49.4 Drawing Primitives . 337
49.5 Sprite and Image Handling . 337
49.6 Image Bank Structure . 337
49.7 Colors . 339
49.8 Game Development Patterns . 339

49.8.1 Basic Game Structure . 339
49.8.2 Boundary Management . 340
49.8.3 Sprite Atlas Pattern . 340

49.9 Tips and Best Practices . 340

xv

Cover

Start your quest here →

1

lessons/L00_ParzivalLegend.html

Cover

2

Preface

About the Book

This book has been written to facilitate a two semester Python programming course for eighth grade stu-
dents. The material begins assuming no prior programming experience and culminates with intermediate
programming topics such as object-oriented programming and the Pyxel graphics library.

The Legend of Parzival

Long ago, in the time of King Arthur, there lived a young man named Parzival. His father, a great knight,
had died in battle, and his mother raised him deep in the forest, away from the world of knights and
combat. She wanted to protect her son from the dangers that had taken her husband.

Parzival grew up innocent and naive, knowing nothing of the ways of the world beyond the forest. One
day, he encountered a group of knights in shining armor. Amazed by their appearance, he decided he
wanted to become a knight too, despite his mother’s warnings.

Setting out on his journey, Parzival faced many challenges. He was awkward and didn’t understand the
rules of knightly behavior, often making mistakes that got him into trouble. But he was brave and deter-
mined, and he slowly began to learn.

His greatest adventure began when he stumbled upon the castle of the Fisher King, keeper of the Holy
Grail. The Fisher King was wounded and in great pain. Parzival was served a grand feast, and he saw a
strange procession: a bleeding lance and a glowing cup were carried through the hall.

Parzival, remembering advice he’d received about not asking toomany questions, said nothing. This turned
out to be a terrible mistake. He learned later that if he had asked about what he saw, he could have healed
the Fisher King and become the new Grail King himself.

Ashamed of his failure, Parzival set out on a quest to find the Grail castle again. He faced many trials
and grew wiser with each challenge. He learned about humility and the importance of asking the right
questions.

After years of searching andmany adventures, Parzival finally found the Grail castle again. This time, older
and wiser, he asked the crucial question: “Whom does the Grail serve?” This simple act of compassion
healed the Fisher King and the wasteland around the castle.

Parzival became the new Grail King, having learned that true knighthood wasn’t just about fighting skills,
but about wisdom and understanding the needs of others.

3

Preface

The legend of Parzival teaches us that it’s okay to make mistakes as long as we learn from them. It shows us
the importance of asking questions and never giving up on our quests, even when they seem impossible.

Python Lessons

In an attempt to keep things fun and to have a recurring theme, the lessons presented to you in this class
will loosely follow the ancient legend of Parzival. The Grail in our case will be the knowledge and skills
necessary to create our own video games from scratch. This is what we will be working up to as we progress
through the various units of study.

Extensive class notes will be provided by me in digital format on the class website in both web and down-
loadable formats. These notes will provide you with explanations and examples of key concepts. You will
not be expected to memorize all of the Python syntax that we cover. You will however be expected to
know where to find the answer to any such questions that may arise. You will find that after using certain
concepts over and over again, you will indeed remember how to structure them correctly in your programs
without them throwing an error, but it will not be uncommon for you to forget certain elements. That is
what this documentation is for.

Assignments

You will quickly discover that writing code that runs perfectly the first time it is executed is a rare event.
You will constantly be modifying your programs so that they do not produce an error or do something
you didn’t expect. This is called debugging and much of your time in here will be devoted to just that. It is
safe to assume that you will spend more time debugging your code than actually writing it.

This class is all about perseverance and determination. You will have many problems set before you that
you will need to find solutions to. Do not develop a negative attitude. You will find that by consulting
your documentation, reading the error messages and focusing by eliminating distractions you will come
to an understanding of what is actually going wrong and a solution will present itself. What absolutely
will not work is staring at your screen and hoping the answer pops into your head. It won’t, no matter
how hard you stare at it.

You will need to use your time wisely in this class. Since we are going to be writing real code, we need to
use a real editor, which unfortunately means that you will not be able to work on the classwork outside
of class on your Chromebook. The school Chromebooks are locked down in such a way that you cannot
run the development environment necessary to complete the assignments. This means that all work will
need to be done in class on the lab computers. If you find that you are not finishing your work in time,
you will need to ensure that you are staying on task in class or attend tutorial sessions after school.

While I do not assign or require typing exercises in this particular class, the ability to type without look-
ing at your hands will greatly speed up your ability to complete your assignments. As such, touch-typing
practice is encouraged both whenever your classwork has been completed and outside of class. Program-
ming requires typing many symbols that may be unfamiliar to even intermediate typists. For those just

4

https://www.lmslab.org/python/book

Final Thoughts

starting out, Typing.com is recommended and for those looking to improve their skills Monkeytype is a
great resource. Both sites are free to use.

Final Thoughts

Learning to write Python programs is a challenging but rewarding experience. I chose to teach Python over
other languages because it is one of the easier languages to learn while still being extremely powerful. Its
concepts are also easily transferred to other languages. I do not expect everyone to continue programming
after they have completed this course, but if you do, you will have real-world experience with a modern
language and a professional code editor. This is real programming in every sense of the word.

5

https://www.typing.com
https://www.monkeytype.com

Preface

6

1 Announcing the Quest: Your First Steps in
Python

Welcome, brave adventurers, to the magical realm of Python programming! Today, we embark on an
epic quest to master four essential skills: the mystical print() function, the art of leaving comments,
understanding the nature of strings, and the power of string concatenation. These tools will be your
trusty companions as we journey through the land of code.

1.1 The Magical print() Function

Imagine you’re Parzival, the legendary knight, and you need to announce your presence to the world. In
Python, we use the print() function to make our code speak. It’s like shouting your name across a misty
lake - whatever you put inside the parentheses will echo through your computer’s console.

Let’s try our first spell:

print("Hail, fellow adventurers!")

When you run this code, you’ll see:

Hail, fellow adventurers!

Congratulations! You’ve just cast your first Python spell. The print() function took the message we gave
it (in quotes) and displayed it for all to see.

You can print all sorts of things:

print("Parzival") # Printing a name

print("Level: 1") # Printing a status

print("Gold coins: 10") # Printing an inventory item

This will output:

Parzival

Level: 1

Gold coins: 10

7

1 Announcing the Quest: Your First Steps in Python

1.2 The Art of Comments: Leaving Trail Marks

As you venture deeper into the forest of code, you’ll want to leave markers for yourself and other program-
mers. In Python, we do this with comments. Comments are notes that the computer ignores, but humans
can read. They’re like secret messages only visible to those who know where to look.

There are two types of comments in Python:

1. Single-line comments: Start with a #
2. Multi-line comments: Enclosed in triple quotes """ or '''

Let’s see them in action:

This is a single-line comment

print("Parzival draws his sword.") # This comment explains the code

"""

This is a multi-line comment.

It can span several lines,

like a long scroll of parchment.

"""

print("The quest begins!")

When you run this code, you’ll only see:

Parzival draws his sword.

The quest begins!

The comments are invisible to the output, like whispers in the wind, guiding future travelers (or yourself
when you return to this code later).

1.3 The Nature of Strings: Magic Words

In the realm of Python, strings are like magic words or phrases. They’re sequences of characters (letters,
numbers, symbols) enclosed in quotes. Strings can be thought of as text that your program canmanipulate
and display.

There are three ways to create strings in Python:

1. Single quotes: 'Hello, world!'

2. Double quotes: "Greetings, adventurer!"

8

1.4 The Power of Concatenation: Combining Magic Words

3. Triple quotes (for multi-line strings):
"""

Welcome to the

land of Python!

"""

All of these are valid strings:

print('Parzival')

print("The Holy Grail")

print("""

Quest Objective:

Find the Python Stone

""")

This will output:

Parzival

The Holy Grail

Quest Objective:

Find the Python Stone

1.4 The Power of Concatenation: Combining Magic Words

Sometimes, you’ll want to combine different strings to form a more powerful message. This is called
concatenation, and it’s like weaving different strands of magic into a single spell.

In Python, we use the + operator to concatenate strings:

print("Parzival" + " the Brave")

print("Quest: " + "Find" + " the" + " Python" + " Stone")

This will output:

Parzival the Brave

Quest: Find the Python Stone

You can also use the * operator to repeat a string:

print("Huzzah! " * 3)

This will output:

9

1 Announcing the Quest: Your First Steps in Python

Huzzah! Huzzah! Huzzah!

1.5 Combining Our Powers: A Grand Announcement

Now, let’s use all our new skills to announce the beginning of our quest:

Announce the start of our Python adventure

print("Hear ye, hear ye!")

print("The grand quest for" + " Python mastery" + " has begun!")

"""

Our journey will be long and challenging,

but with print(), comments, strings, and concatenation as our allies,

we shall prevail!

"""

print("Let the " + "adventure" * 3 + " commence!")

This will output:

Hear ye, hear ye!

The grand quest for Python mastery has begun!

Let the adventureadventureadventure commence!

1.6 Common Bugs to Watch Out For

As you begin your journey, beware of these common pitfalls:

1. Forgetting parentheses: Always enclose your message in parentheses after print. print "Hello"

will cause an error, but print("Hello") works perfectly.

2. Mismatched quotes: Make sure you close your quotes properly. print("Hello) will cause an error
because the quotes don’t match.

3. Indentation in comments: Python ignores indentation in comments, but it’s good practice to keep
them aligned with the code they’re describing.

4. Concatenating strings and non-strings: You can only concatenate strings with other strings.
print("Level: " + 1) will cause an error, but print("Level: " + "1") works fine.

5. Forgetting spaces in concatenation: When concatenating strings, remember to include spaces if
you need them. "Hello" + "world" will produce "Helloworld", not "Hello world".

10

1.7 Conclusion and Further Resources

1.7 Conclusion and Further Resources

Congratulations! You’ve taken your first steps on the path to Python mastery. You now wield the power
of print() to make your code speak, you know the secret art of leaving comments to guide your way, you
understand the nature of strings, and you can weave them together with concatenation.

To continue your quest and learn more about Python basics, check out these excellent resources:

1. Python for Beginners - The official Python website’s guide for newcomers.
2. Codecademy’s Learn Python 3 course - An interactive course that builds on what you’ve learned

today.
3. Python Tutor - A great tool to visualize how your Python code runs, step by step.
4. Real Python - Python String Formatting - A comprehensive guide to workingwith strings in Python.

Remember, every grand quest begins with a single step. You’ve already taken that step today. Keep prac-
ticing, keep exploring, and soon you’ll be crafting Python spells with the best of them. Onward to adven-
ture!

11

https://www.python.org/about/gettingstarted/
https://www.codecademy.com/learn/learn-python-3
http://pythontutor.com/
https://realpython.com/python-string-formatting/

1 Announcing the Quest: Your First Steps in Python

12

2 The Language of Chivalry: Mastering Escape
Characters

In our previous quest, we learned the magic of the print() function and the art of leaving comments.
Today, we embark on a new adventure to master the secret language of escape characters. These mystical
symbols will allow us to bend the rules of text and create more powerful and flexible messages in our
code.

2.1 What are Escape Characters?

Imagine you’re writing a coded message for your fellow knights. Sometimes, you need to include special
symbols or secret instructions within your text. In Python, escape characters are like these secret codes.
They allow us to include special characters or perform special actions within our strings.

An escape character in Python always starts with a backslash \, followed by another character. This com-
bination tells Python to treat the next character in a special way.

2.2 The Most Common Escape Characters

Let’s explore some of the most frequently used escape characters:

1. \n - New Line
2. \t - Tab
3. \" - Double Quote
4. \' - Single Quote
5. \\ - Backslash

2.3 The Magic of \n: Creating New Lines

The \n escape character is like a magical quill that starts a new line in your text. Let’s see it in action:

print("Parzival's Quest:\nFind the Holy Grail\nDefeat the Dragon\nSave the Kingdom")

This will output:

13

2 The Language of Chivalry: Mastering Escape Characters

Parzival's Quest:

Find the Holy Grail

Defeat the Dragon

Save the Kingdom

2.4 The Power of \t: Adding Tabs

The \t escape character is like a magical spacing wand. It adds a tab space to your text:

print("Knight's Inventory:\n\tSword\n\tShield\n\tArmor")

This will output:

Knight's Inventory:

Sword

Shield

Armor

2.5 Quoting Within Quotes: \" and \'

Sometimes, you need to include quotes within your string. The \" and \' escape characters allow you to
do this without confusing Python:

print("The wise wizard said, \"Python is the language of modern magic!\"")

print('Parzival shouted, \'For the love of code!\'')

This will output:

The wise wizard said, "Python is the language of modern magic!"

Parzival shouted, 'For the love of code!'

2.6 The Elusive Backslash: \\

What if you want to include a backslash in your text? You use two backslashes \\:

print("The path to Python mastery: C:\\Python\\Knights\\Quests")

This will output:

14

2.7 Combining Escape Characters: The Ultimate Spell

The path to Python mastery: C:\Python\Knights\Quests

2.7 Combining Escape Characters: The Ultimate Spell

Now, let’s combine our new skills to create a more complex message:

print("Knight's Code:\n1. \"Always write clear code\"\n2. \tUse comments wisely\n3. \tMaster\

escape characters\n4. \"Practice, practice, practice!\"")

This will output:

Knight's Code:

1. "Always write clear code"

2. Use comments wisely

3. Master escape characters

4. "Practice, practice, practice!"

2.8 Common Bugs to Watch Out For

As you practice your new escape character skills, beware of these common pitfalls:

1. Forgetting the backslash: Remember, all escape characters start with \. Without it, Python won’t
recognize the special character.

2. Using forward slash instead of backslash: Make sure you’re using \ (backslash) and not / (forward
slash) for escape characters.

3. Mismatching quotes: When using \" or \', make sure you’re using the correct type of quote to
match the ones surrounding your string.

4. Forgetting to escape backslashes: If you want to include a literal backslash in your string, remember
to use \\.

5. Overusing escape characters: While escape characters are powerful, overusing them can make your
code hard to read. Use them judiciously.

15

2 The Language of Chivalry: Mastering Escape Characters

2.9 Conclusion and Further Resources

You’ve now mastered the secret language of escape characters. With these tools in your arsenal, you can
create more complex and flexible text outputs in your Python programs.

To continue your quest and learn more about Python strings and escape characters, check out these excel-
lent resources:

1. Python String Escape Characters - A comprehensive list of Python escape characters from
W3Schools.

2. Real Python - String Basics - An in-depth guide to Python strings, including escape characters.
3. Python Official Documentation - String Literals - For the truly ambitious knights, the official

Python documentation on string literals.

Remember, mastering the language of chivalry (and Python) takes practice. Keep experimenting with
these magical symbols, and soon you’ll be crafting messages worthy of the greatest Python knights in the
realm. Onward to your next coding adventure!

16

https://www.w3schools.com/python/gloss_python_escape_characters.asp
https://realpython.com/python-strings/
https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals

3 Parzival’s Identity: The Magic of Variables

Today, we embark on a thrilling quest to unlock the power of variables in Python. Just as Parzival, our
legendary knight, has many traits that make up his identity, variables in Python allow us to give names
and values to different pieces of information in our code.

3.1 What are Variables?

Imagine you have a magical backpack that can hold anything - swords, potions, or even abstract concepts
like a hero’s name or age. In Python, variables are like these magical backpacks. They can store different
types of data that we can use and change throughout our program.

Let’s create our first variable:

hero_name = "Parzival"

print(hero_name)

When you run this code, you’ll see:

Parzival

What just happened? We created a variable called hero_name and stored the value “Parzival” in it. Then,
we used print() to display the contents of our variable.

3.2 Creating and Using Variables

Creating a variable in Python is as simple as giving it a name and assigning it a value using the = sign. Here
are some more examples:

hero_level = 1

hero_health = 100

is_brave = True

print("Hero Name:", hero_name)

print("Level:", hero_level)

print("Health:", hero_health)

print("Is Brave:", is_brave)

17

3 Parzival’s Identity: The Magic of Variables

This will output:

Hero Name: Parzival

Level: 1

Health: 100

Is Brave: True

Notice how we can store different types of data in variables: strings (text), integers (whole numbers), and
booleans (True or False values).

3.3 Changing Variable Values

One of the most powerful features of variables is that we can change their values throughout our program.
Let’s level up our hero:

print("Parzival defeats a dragon!")

hero_level = 2

hero_health = 120

print("New Level:", hero_level)

print("New Health:", hero_health)

This will output:

Parzival defeats a dragon!

New Level: 2

New Health: 120

3.4 Variable Naming Rules

When naming your variables, there are a few rules to follow:

1. Variable names can contain letters, numbers, and underscores.
2. They must start with a letter or underscore, not a number.
3. They are case-sensitive (hero_name and Hero_Name are different variables).
4. You can’t use Python’s reserved words (like print, if, for, etc.) as variable names.

Good variable names:

player_score = 100

enemy_count = 5

is_game_over = False

18

3.5 Practice Time: Create Your Hero

Bad variable names:

a = 100 # Not descriptive

1st_player = "Alice" # Can't start with a number

print = "Hello" # 'print' is a reserved word

3.5 Practice Time: Create Your Hero

Now it’s your turn to wield the power of variables. Complete these quests to prove your mastery:

1. Create variables for your hero’s name, level, health, and a special power.
2. Print out your hero’s stats using these variables.
3. Your hero finds a magic potion that increases their health by 50 points. Update the health variable

and print the new value.

Here’s a starting point for your quest:

Quest 1: Create your hero's variables

hero_name = "Your Hero's Name"

Add more variables here

Quest 2: Print your hero's stats

print("Hero Name:", hero_name)

Print more stats here

Quest 3: Use the magic potion

print("Your hero finds a magic potion!")

Update the health variable and print the new value

3.6 Common Bugs to Watch Out For

As you venture into the world of variables, beware of these common pitfalls:

1. Using a variable before assigning it a value: Make sure you’ve given a variable a value before trying
to use it.

2. Misspelling variable names: Python won’t recognize hero_name and hero_Nome as the same variable.
Double-check your spelling!

3. Forgetting quotation marks for strings: If you want to store text in a variable, remember to use
quotes. hero_name = Parzival will cause an error, but hero_name = "Parzival" works perfectly.

4. Using reserved words: Avoid using Python’s special words like print, if, or for as variable names.

19

3 Parzival’s Identity: The Magic of Variables

3.7 Conclusion and Further Resources

You’ve unlocked the power of variables, a crucial skill in your Python journey. With variables, you can now
create more dynamic and flexible programs, storing and manipulating data like a true coding wizard.

To continue your quest and learn more about Python variables, check out these resources:

1. Python Variables - W3Schools’ guide to Python variables.
2. Real Python - Variables in Python - An in-depth look at variables in Python.
3. Codecademy’s Learn Python 3 course - The “Python: Variables” section builds on what you’ve

learned today.

Remember, every great adventure is made up of many small steps. You’ve taken another important step to-
day on your path to Python mastery. Keep practicing, keep exploring, and soon you’ll be crafting complex
Python spells with ease. Onward to the next challenge!

20

https://www.w3schools.com/python/python_variables.asp
https://realpython.com/python-variables/
https://www.codecademy.com/learn/learn-python-3

4 The Power of Input: Interacting with the User

In our last lesson, we learned how to create and use variables to store information. Today, we’ll learn
a powerful spell that allows our programs to interact with users: the input() function. This magical
incantation will enable our code to ask questions and use the answers, making our programsmore dynamic
and engaging.

4.1 What is input()?

Imagine you’re a wizard creating a magical mirror. Instead of just showing a reflection, this mirror can ask
questions and respond based on the answers. In Python, the input() function is like this magical mirror.
It allows our program to pause, ask the user a question, and then use their response.

Let’s try a simple example:

user_name = input("What is your name, brave adventurer? ")

print("Welcome to the realm of Python,", user_name + "!")

When you run this code, it will pause and wait for you to type your name. After you press the Enter key,
it will greet you. The output might look like this:

What is your name, brave adventurer? Sir Codealot

Welcome to the realm of Python, Sir Codealot!

4.2 How input()Works

The input() function does three important things:

1. It displays a prompt (the question inside the parentheses).
2. It waits for the user to type something and press Enter.
3. It returns what the user typed as a string (text).

We can store this returned value in a variable, just like we learned in our previous lesson.

21

4 The Power of Input: Interacting with the User

4.3 Using input() with Different Types of Data

By default, input() always returns a string. But what if we want to get a number from the user? We can
combine input() with type conversion functions like int() or float().

Let’s create a program that asks for the hero’s age and level:

hero_name = input("What is your hero's name? ")

hero_age = input("How old is your hero? ")

hero_level = input("What level is your hero? ")

print(hero_name, "is a level", hero_level, "hero who is", hero_age, "years old.")

This might produce output like:

What is your hero's name? Parzival

How old is your hero? 16

What level is your hero? 5

Parzival is a level 5 hero who is 16 years old.

4.4 Creating an Interactive Story

Now, let’s use our new input() skills to create a simple interactive story:

print("Welcome to the Python Quest!")

hero_name = input("What is your hero's name? ")

weapon = input("Choose your weapon (sword/bow/magic): ")

print("\nOur hero,", hero_name, "armed with a", weapon + ", sets out on a grand adventure.")

enemy = input("Suddenly, an enemy appears! What kind of enemy is it? ")

print("A fierce", enemy, "blocks the path!")

action = input("What does " + hero_name + " do? (fight/run) ")

print(hero_name, "decides to", action + ".")

print("And so, the adventure continues...")

This program creates a simple but interactive story, where the user’s input shapes the narrative.

22

4.5 Common Bugs to Watch Out For

4.5 Common Bugs to Watch Out For

As you experiment with input(), be aware of these common pitfalls:

1. Forgetting to convert input types: Remember, input() always returns a string. If you need a number,
use int() or float() to convert it.

2. Forgetting to use the input: Make sure you’re using the value returned by input(), either by storing
it in a variable or using it directly.

3. Not providing clear instructions: Be specific about what kind of input you’re expecting from the
user to avoid confusion.

4. Assuming numeric input: If you’re expecting a number, the user might enter text by mistake. We’ll
learn how to handle these errors in future lessons.

4.6 Conclusion and Further Resources

You’ve mastered the art of input(), allowing your programs to interact with users and create dynamic
experiences. This skill opens up a world of possibilities for creating interactive games, quizzes, and useful
tools.

To further enhance your input() skills, check out these resources:

1. Python Input and Output - A comprehensive guide to input and output in Python.
2. Real Python - Python Input, Output, and Import - An in-depth tutorial on Python’s I/O functions.
3. Automate the Boring Stuff with Python - Chapter 1 includes great examples of using input for

practical programs.

Remember, the ability to interact with users makes your programs come alive. Keep practicing, keep
creating, and soon you’ll be crafting complex, interactive Python adventures that respond to user input in
amazing ways. Onward to your next coding quest!

23

https://www.programiz.com/python-programming/input-output-import
https://realpython.com/python-input-output/
https://automatetheboringstuff.com/2e/chapter1/

4 The Power of Input: Interacting with the User

24

5 Debugging Basics: Unraveling the Mysteries of
Code

As you journey through the realm of Python, you’ll encounter mysterious bugs and errors that can hinder
your progress. Fear not! Today, we’ll learn the art of debugging - the magical skill of finding and fixing
problems in your code.

5.1 What is Debugging?

Imagine you’re crafting a magical spell (your code), but when you cast it, it doesn’t work as expected.
Debugging is like being a detective, investigating your spell to find out what went wrong and how to fix
it.

5.2 Types of Errors

In your Python quests, you might encounter three types of mystical barriers (errors):

1. Syntax Errors: These are like spelling mistakes in your magical incantations. Python can’t under-
stand the spell because it’s not written correctly.

2. Runtime Errors: These occur when your spell is cast (the code runs) but fails midway through. It’s
like a potion exploding halfway through brewing.

3. Logical Errors: The trickiest of all! Your spell runs without any error messages, but it doesn’t do
what you expected. It’s like trying to summon a dragon but getting a rabbit instead.

5.3 Reading Error Messages

When Python encounters a syntax or runtime error, it provides a magical scroll (error message) to help
you. Let’s decipher one:

print("Hello, world!"

This will produce:

25

5 Debugging Basics: Unraveling the Mysteries of Code

File "spell.py", line 1

print("Hello, world!"

^

SyntaxError: unexpected EOF while parsing

Let’s break down this mystical message:

• It tells you which file and line number the error occurred on.
• It points to where in the line the error was found (^).
• It gives you the type of error (SyntaxError) and a brief description.

5.4 Basic Debugging Techniques

1. Read the Error Message: The first step in solving any magical mishap is to carefully read the error
message. It often points you directly to the problem.

2. Check Your Syntax: Make sure all your parentheses, quotes, and colons are in the right places. Even
master wizards make these mistakes!

3. Use Print Statements: Add print() statements to your code to check the values of variables or to
see which parts of your code are running. It’s like leaving glowing markers along your path.

4. Comment Out Code: If you’re not sure which part of your spell is causing problems, try comment-
ing out sections to isolate the issue.

5.5 Debugging in VSCode

VSCode, your magical coding mirror, has some special enchantments to help you debug:

1. Syntax Highlighting: VSCode uses colors to help you identify different parts of your code. If some-
thing looks off-color, it might be a syntax error.

2. Error Squiggles: VSCode underlines potential errors with red squiggly lines. Hover over these for
more information.

3. Problems Panel: Look for the “Problems” tab at the bottom of VSCode. It lists errors and warnings
in your code.

26

5.6 Practice Time: Debug These Spells

5.6 Practice Time: Debug These Spells

Try to debug these magical incantations:

1. Syntax Error:

print("I cast a spell of debugging!"

2. Runtime Error:
wizard_name = "Merlin"

print("The great wizard", wizard_name, "casts ", spell_name)

3. Logical Error:
potion_ingredient = "newt eyes"

print("Adding", potion_ingredient, "to the cauldron")

potion_ingredient = "dragon scales"

print("The potion now contains", potion_ingredient)

5.7 Common Bugs to Watch Out For

1. Mismatched Quotes: Make sure you close all your quotes properly.
2. Incorrect Indentation: Python is very particular about indentation.
3. Misspelled Variable Names: Python won’t recognize wizard_nam if you meant wizard_name.
4. Using Variables Before Defining Them: Make sure you’ve given a value to a variable before trying

to use it.

5.8 Conclusion and Further Resources

You’ve taken your first steps into the arcane art of debugging. Remember, every great wizard makes mis-
takes - the key is learning how to find and fix them.

To further enhance your debugging skills, check out these magical tomes:

1. Python’s official debugging tips
2. Real Python’s guide to debugging Python code
3. VSCode’s Python debugging documentation

Keep practicing your debugging spells, and soon you’ll be unraveling the mysteries of code with ease!

27

https://docs.python.org/3/tutorial/errors.html
https://realpython.com/python-debugging-pdb/
https://code.visualstudio.com/docs/python/debugging

5 Debugging Basics: Unraveling the Mysteries of Code

28

6 Python Data Types: Strings and Numeric Types

Today, we’re investigating the magical realm of Python data types. We’ll explore the difference between
strings and numeric types, and learn about some powerful spells (functions) that can transform these types.
By the end of this lesson, you’ll be able to identify and convert between different data types like a true
Python sorcerer!

6.1 The Two Realms: Strings and Numbers

In the world of Python, data exists in different forms, much like how in a fantasy world, you might en-
counter humans, elves, and dwarves. Two of the most common types of data are strings and numeric
types.

6.2 Strings: The Realm of Text

Strings are sequences of characters, like words or sentences. They’re always enclosed in quotes (single or
double).

Examples of strings:

"Hello, World!"

'Python is awesome'

"42" # Yes, this is a string, not a number!

6.3 Numeric Types: The Realm of Numbers

Python has two main types of numbers:

1. Integers (int): Whole numbers, positive or negative.
2. Floating-point numbers (float): Numbers with decimal points.

Examples of numeric types:

42 # This is an integer

-10 # This is also an integer

3.14 # This is a float

29

6 Python Data Types: Strings and Numeric Types

6.4 The type() Function: Identifying the Species

In our magical Python world, type() is like a spell that reveals the true nature of any data. Let’s use it to
identify some different types:

print(type("Hello")) # Output: <class 'str'>

print(type(42)) # Output: <class 'int'>

print(type(3.14)) # Output: <class 'float'>

6.5 Transformation Spells: Converting Between Types

Sometimes, we need to convert data from one type to another. Python provides magical functions for
these transformations:

6.6 str(): Turning Anything into a String

The str() function can turn numbers (and many other things) into strings:

number = 42

string_number = str(number)

print(type(string_number)) # Output: <class 'str'>

print("The answer is " + string_number) # Now we can concatenate!

6.7 int(): Converting to Integers

The int() function converts strings or floats to integers:

string_number = "42"

integer = int(string_number)

print(type(integer)) # Output: <class 'int'>

print(integer + 8) # Now we can do math! Output: 50

Be careful! int() will remove any decimal part from a float:

print(int(3.99)) # Output: 3

30

6.8 float(): Converting to Floating-Point Numbers

6.8 float(): Converting to Floating-Point Numbers

The float() function converts strings or integers to floating-point numbers:

integer = 42

float_number = float(integer)

print(type(float_number)) # Output: <class 'float'>

print(float_number) # Output: 42.0

string_float = "3.14"

pi = float(string_float)

print(type(pi)) # Output: <class 'float'>

print(pi) # Output: 3.14

6.9 Practical Magic: Using These Powers

Let’s see howwe can use these transformation spells in a real scenario. Imagine we’re creating a spell points
calculator for a game:

The player's current spell points (as a string)

spell_points_str = "100"

The cost of casting a fireball (as an integer)

fireball_cost = 30

Convert spell points to an integer

spell_points = int(spell_points_str)

Cast the spell!

remaining_points = spell_points - fireball_cost

Convert the result back to a string for display

result = "Remaining spell points: " + str(remaining_points)

print(result) # Output: Remaining spell points: 70

6.10 Practice Your Magic

Now it’s your turn to practice these transformation spells:

1. Create a string containing a number (like “3.14”) and convert it to a float.
2. Take an integer (like 42) and convert it to a string.

31

6 Python Data Types: Strings and Numeric Types

3. Use type() to check the type of each result.
4. Try to add a number to a string (like “Age: " + 25). What happens? How can you fix it?

6.11 Common Bugs to Watch Out For

As you experiment with these magical type conversions, be wary of these common pitfalls:

1. TypeError: This occurs when you try to combine incompatible types, like adding a string to an
integer.

print("Age: " + 25) # TypeError: can only concatenate str (not "int") to str

2. ValueError: This happens when you try to convert a string to a number, but the string doesn’t
represent a valid number.

int("Hello") # ValueError: invalid literal for int() with base 10: 'Hello'

3. Losing Precision: When converting from float to int, you lose the decimal part.

print(int(3.99)) # Output: 3

4. Forgetting to Convert: Remember to convert strings to numbers before doing math operations.
"5" * 3 # This repeats the string, doesn't multiply! Output: '555'

6.12 Conclusion

You’ve learned to distinguish between strings and numeric types, and you’ve mastered the arts of type
identification and conversion. These skills will serve you well on your coding quests.

Remember, the power to convert between types is great, but with great power comes great responsibility.
Always be mindful of what type of data you’re working with, and use your conversion spells wisely!

6.13 Further Resources

To deepen your understanding of Python data types, check out these magical tomes:

1. Python’s Official Documentation on Built-in Types
2. Real Python’s Guide to Python Data Types
3. Codecademy’s Learn Python 3 course (Data Types section)

Keep practicing, and soon you’ll be casting these Python spells in your sleep!

32

https://docs.python.org/3/library/stdtypes.html
https://realpython.com/python-data-types/
https://www.codecademy.com/learn/learn-python-3

7 Arithmetic Operators: The Magic of
Mathematical Operations

Now that you’ve mastered the art of data types, it’s time to learn how to performmagical calculations with
Python’s arithmetic operators. These powerful symbols will allow you to add, subtract, multiply, divide,
and more!

7.1 The Basic Arithmetic Spells

Python provides several basic arithmetic operators that work just like the math you’re familiar with:

1. Addition: +
2. Subtraction: -
3. Multiplication: *
4. Division: /
5. Integer Division: //
6. Modulus (Remainder): %
7. Exponentiation: **

Let’s explore each of these magical symbols!

7.2 Addition (+)

The + operator adds two numbers together:

result = 5 + 3

print(result) # Output: 8

You can also use variables

a = 10

b = 7

sum = a + b

print(sum) # Output: 17

33

7 Arithmetic Operators: The Magic of Mathematical Operations

7.3 Subtraction (-)

The - operator subtracts the right number from the left:

result = 10 - 4

print(result) # Output: 6

difference = 15 - 23

print(difference) # Output: -8

7.4 Multiplication (*)

The * operator multiplies two numbers:

result = 6 * 7

print(result) # Output: 42

You can multiply floats too

price = 4.99

quantity = 3

total = price * quantity

print(total) # Output: 14.97

7.5 Division (/)

The / operator divides the left number by the right. Note that this always returns a float:

result = 20 / 5

print(result) # Output: 4.0

result = 10 / 3

print(result) # Output: 3.3333333333333335

7.6 Floor Division (//)

The // operator performs division and rounds down to the nearest integer:

34

7.7 Modulus (%)

result = 20 // 6

print(result) # Output: 3

result = -20 // 6

print(result) # Output: -4 (rounds towards negative infinity)

7.7 Modulus (%)

The % operator returns the remainder after division:

result = 17 % 5

print(result) # Output: 2

This is useful for checking if a number is even or odd

is_even = 10 % 2 == 0

print(is_even) # Output: True

7.8 Exponentiation (**)

The ** operator raises the left number to the power of the right number:

result = 2 ** 3

print(result) # Output: 8

result = 9 ** 0.5

print(result) # Output: 3.0 (square root of 9)

7.9 Order of Operations

Just like in regular math, Python follows the order of operations (PEMDAS):

1. Parentheses
2. Exponents
3. Multiplication and Division (left to right)
4. Addition and Subtraction (left to right)

Let’s see an example:

35

7 Arithmetic Operators: The Magic of Mathematical Operations

result = 2 + 3 * 4 ** 2 - 6 / 2

print(result) # Output: 47.0

Let's break it down:

1. 4 ** 2 = 16

2. 3 * 16 = 48

3. 6 / 2 = 3.0

4. 2 + 48 - 3.0 = 47.0

7.10 Combining Arithmetic with Assignment

Python provides a shorthand way to perform an operation and assign the result back to the variable:

x = 10

x += 5 # Equivalent to x = x + 5

print(x) # Output: 15

y = 20

y *= 3 # Equivalent to y = y * 3

print(y) # Output: 60

This works with all arithmetic operators: +=, -=, *=, /=, //=, %=, **=

7.11 Practical Magic: A Potion Brewing Calculator

Let’s use our new arithmetic skills to create a potion brewing calculator:

Initial ingredients

dragon_scales = 5

phoenix_feathers = 3

unicorn_hair = 2

Brewing process

potion_power = dragon_scales * 2 + phoenix_feathers ** 2 + unicorn_hair * 3

print("Potion power:", potion_power)

We found some extra ingredients!

dragon_scales += 2

phoenix_feathers *= 2

Recalculate potion power

36

7.12 Practice Your Arithmetic Magic

potion_power = dragon_scales * 2 + phoenix_feathers ** 2 + unicorn_hair * 3

print("New potion power:", potion_power)

Check if the potion is extra powerful (power > 50)

is_extra_powerful = potion_power > 50

print("Is the potion extra powerful?", is_extra_powerful)

7.12 Practice Your Arithmetic Magic

Now it’s your turn to practice these arithmetic spells:

1. Calculate the area of a rectangle with length 7 and width 5.
2. You have 47 gold coins and want to divide them equally among 5 friends. How many coins does

each friend get, and how many are left over?
3. Calculate 2 to the power of 10 using the exponentiation operator.
4. Create a simple temperature converter that converts Celsius to Fahrenheit using the formula: F =

C * 9/5 + 32

7.13 Common Bugs to Watch Out For

As you experiment with arithmetic operations, be wary of these common pitfalls:

1. Division by Zero: Trying to divide by zero will raise a ZeroDivisionError.

result = 10 / 0 # ZeroDivisionError: division by zero

2. Integer Division Surprises: Remember that // always rounds down.

result = 5 // 2 # Output: 2, not 2.5

3. Floating Point Precision: Sometimes, floating-point arithmetic can give slightly unexpected results
due to how computers represent decimals.

result = 0.1 + 0.2

print(result) # Output: 0.30000000000000004

4. String and Number Confusion: Make sure you’re not trying to perform arithmetic on strings.

result = "5" + 3 # TypeError: can only concatenate str (not "int") to str

37

7 Arithmetic Operators: The Magic of Mathematical Operations

7.14 Conclusion

You’ve now mastered the basic arithmetic operators in Python. With these tools at your disposal, you can
perform a wide range of calculations, from simple addition to complex formulas.

Remember, practice makes perfect. The more you use these operators, the more natural they’ll become.
Soon, you’ll be slinging arithmetic spells like a true Python wizard!

7.15 Further Resources

To deepen your understanding of Python arithmetic, check out these magical scrolls:

1. Python’s Official Documentation on Numeric Types
2. Real Python’s Guide to Basic Python Math
3. Khan Academy’s Arithmetic Operations (for a refresher on the math concepts)

Keep calculating, and may your Python programs always compute true!

38

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
https://realpython.com/python-basic-math/
https://www.khanacademy.org/math/arithmetic

8 String Wizardry: Mastering F-Strings

Today, we embark on a magical journey into the realm of f-strings. These powerful incantations will allow
you to weave variables and expressions directly into your strings, making your code more readable and
efficient. Let’s uncover the secrets of this string wizardry!

8.1 What are F-Strings?

F-strings, short for “formatted string literals”, are a way to embed expressions inside string literals. They
were introduced in Python 3.6 and have quickly become a favorite tool among Python mages. F-strings
start with the letter ‘f’ before the opening quotation mark.

Let’s start with a simple example:

name = "Parzival"

level = 5

print(f"The knight {name} is at level {level}")

This will output:

The knight Parzival is at level 5

The magic here is that {name} and {level} are replaced with the values of the variables name and level.

8.2 The Power of Expressions in F-Strings

F-strings aren’t limited to just variables. You can put any valid Python expression inside the curly braces.
Let’s see some examples:

strength = 10

dexterity = 15

print(f"Total combat score: {strength + dexterity}")

gold_coins = 150

exchange_rate = 1.5

print(f"Your {gold_coins} gold coins are worth {gold_coins * exchange_rate} silver pieces")

39

8 String Wizardry: Mastering F-Strings

This will output:

Total combat score: 25

Your 150 gold coins are worth 225.0 silver pieces

8.3 Formatting Options

F-strings offer powerful formatting options. You can specify the number of decimal places andmore. Here
are some examples:

pi = 3.14159265359

print(f"Pi to 2 decimal places: {pi:.2f}")

name = "Merlin"

print(f"Name: {name:>10}") # Right-aligned in 10 spaces

percentage = 0.86

print(f"Completion: {percentage:%}")

big_number = 8869014

print(f"Big Number: {big_number:,}")

crazy_percentage = 42543.213543507

print(f"All together: {crazy_percentage:,.4%}")

This will output:

Pi to 2 decimal places: 3.14

Name: Merlin

Completion: 86%

Big Number: 8,869,014

All together: 4,254,321.3544

8.4 Multiline F-Strings

You can create multiline f-strings by using triple quotes. This is perfect for crafting longer messages or
formatting data:

40

8.5 Practice Time: Casting Your Own F-String Spells

name = "Parzival"

quest = "Python Mastery"

favorite_color = "Blue"

message = f"""

Knight: {name}

Quest: {quest}

Favorite Color: {favorite_color}

"""

print(message)

This will output:

Knight: Parzival

Quest: Python Mastery

Favorite Color: Blue

8.5 Practice Time: Casting Your Own F-String Spells

Now it’s your turn to wield the power of f-strings. Complete these quests to hone your skills:

1. Create variables for your character’s name, class (e.g., “Wizard”, “Knight”), and three skills with
numerical values (e.g., “Magic: 10”, “Strength: 8”, “Wisdom: 12”). Use f-strings to create a character
sheet.

2. Calculate the average of your three skills and display it with 1 decimal place using an f-string.

3. Create a multi-line f-string that tells a short story about your character, incorporating all the vari-
ables you’ve created.

Here’s a starting point for your quests:

Quest 1: Character Sheet

name = "Your Character Name"

character_class = "Your Class"

skill1_name, skill1_value = "Skill1", 10

Add more skills here

Create your character sheet using f-strings

Quest 2: Skill Average

Calculate and display the average

41

8 String Wizardry: Mastering F-Strings

Quest 3: Character Story

Create a multiline f-string story

8.6 Common Bugs to Watch Out For

As you cast your f-string spells, be wary of these common pitfalls:

1. Forgetting the ‘f’ prefix: Without the ‘f’ before the string, it won’t be treated as an f-string.

2. Unmatched braces: Make sure all your opening { have a matching closing }.

3. Invalid expressions: The expressions inside the braces must be valid Python code.

4. Quotation mark confusion: Be careful when using quotes inside f-strings. You might need to alter-
nate between single and double quotes.

5. Forgetting to close the string: Make sure you have a closing quotation mark for every opening one.

8.7 Conclusion and Further Resources

You’ve mastered the art of f-strings, a powerful tool in your Python spellbook. With this knowledge, you
can create more readable and efficient code, weaving variables and expressions into your strings with
ease.

To further enhance your string manipulation skills, check out these excellent resources:

1. Python f-string documentation - The official Python documentation on f-strings.
2. Real Python’s f-string guide - A comprehensive tutorial on f-strings and string formatting.
3. Python String Formatting Best Practices - A guide to help you choose the best string formatting

method for different situations.

Remember, the key to mastering any magical skill is practice. Keep experimenting with f-strings in your
code, and soon you’ll be crafting elegant and powerful string spells with ease. May your strings always be
perfectly formatted, and your code ever readable!

42

https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://realpython.com/python-f-strings/
https://realpython.com/python-string-formatting/

9 The Grail Castle Test: Mastering ‘If’
Statements

In our previous lesson, we learned about logical operators. Today, we’ll use that knowledge to enter the
Grail Castle of conditional statements, focusing on the powerful ‘if’ statement. This magical construct
will allow our code to make decisions, just as a knight must choose their path wisely.

9.1 What are Conditional Statements?

Imagine you’re standing at a crossroads in your quest. The path you choose depends on certain conditions
- is it raining? Do you have enough provisions? Are there dragons ahead? In Python, we use conditional
statements to make these kinds of decisions in our code.

The ‘if’ statement is the most basic form of conditional statement. It allows us to execute a block of code
only if a certain condition is true.

9.2 The Structure of an ‘If’ Statement

Here’s the basic structure of an ‘if’ statement:

if condition:

Code to execute if the condition is True

This block is indented

Let’s break this down:

1. The statement starts with the keyword if.
2. After if, we have a condition - an expression that evaluates to either True or False.
3. The condition is followed by a colon :.
4. The next line starts an indented block of code. This block only runs if the condition is True.

43

9 The Grail Castle Test: Mastering ‘If’ Statements

9.3 Your First ‘If’ Statement

Let’s cast our first ‘if’ statement spell:

is_knight = True

if is_knight:

print("You may enter the Grail Castle.")

print("This line always runs.")

This will output:

You may enter the Grail Castle.

This line always runs.

If we change is_knight to False, we’ll only see:

This line always runs.

9.4 Using Comparison Operators in Conditions

We often use comparison operators in our conditions. Here’s a list of these operators:

• ==: Equal to
• !=: Not equal to
• >: Greater than
• <: Less than
• >=: Greater than or equal to
• <=: Less than or equal to

Let’s use these in some ‘if’ statements:

knight_level = 7

if knight_level >= 5:

print("You are experienced enough for this quest.")

magic_power = 20

if magic_power > 50:

print("You can cast a powerful spell!")

44

9.5 Combining Conditions with Logical Operators

password = "Camelot"

if password == "Camelot":

print("Access granted to the Round Table.")

9.5 Combining Conditions with Logical Operators

Remember our logical operators (and, or, not) from the previous lesson? We can use these to create more
complex conditions:

has_sword = True

has_shield = False

is_brave = True

if has_sword and is_brave:

print("You are ready to face the dragon!")

if has_sword or has_shield:

print("You have at least one piece of equipment.")

if not has_shield:

print("You might want to buy a shield.")

9.6 Practice Your ‘If’ Statement Magic

Now it’s your turn to practice these conditional spells:

1. Create a variable dragon_hp (hit points) and set it to a number. Write an ‘if’ statement that prints
“The dragon is defeated!” if dragon_hp is 0 or less.

2. Make variables for has_sword, has_armor, and has_magic. Write an ‘if’ statement that prints “You
are fully equipped!” if all three are True.

3. Create a player_gold variable. Write an ‘if’ statement that prints “You can buy a potion” if
player_gold is at least 50.

Here’s a starting point for your practice:

Quest 1: Defeat the Dragon

dragon_hp = 100 # Change this value to test your code

Your code here

Quest 2: Check Equipment

45

9 The Grail Castle Test: Mastering ‘If’ Statements

has_sword = True

has_armor = False

has_magic = True

Your code here

Quest 3: Buy a Potion

player_gold = 75

Your code here

Quest 4: Weather Check

is_day = True

is_sunny = False

Your code here

9.7 Common Bugs to Watch Out For

As you cast your ‘if’ statement spells, beware of these common pitfalls:

1. Forgetting the colon: Always remember to put a colon : at the end of your ‘if’ line.

2. Incorrect indentation: The code block under an ‘if’ statement must be indented. Incorrect inden-
tation can change the meaning of your code.

3. Using = instead of ==: Remember, = is for assignment, == is for comparison.

4. Misusing and and or: Be clear about your logic. and requires all conditions to be True, while or only
requires one.

5. Unnecessary if statements: You don’t need an ‘if’ statement to check a boolean variable. Instead of
if is_knight == True:, you can simply write if is_knight:.

9.8 Conclusion and Further Resources

You’ve now mastered the art of ‘if’ statements, a crucial skill in your coding arsenal. With this power,
your programs can now make decisions and respond to different conditions, just like a real knight on a
quest.

To further hone your ‘if’ statement skills, check out these valuable resources:

1. Python Official Documentation on ‘if’ statements
2. Real Python’s Python Conditional Statements
3. W3Schools Python Conditions

46

https://docs.python.org/3/tutorial/controlflow.html#if-statements
https://realpython.com/python-conditional-statements/
https://www.w3schools.com/python/python_conditions.asp

9.8 Conclusion and Further Resources

Remember, every great Python sorcerer started where you are now. Keep practicing your ‘if’ statements,
and soon you’ll be weaving complex decision-making logic into your code with ease. Onward to your next
coding challenge!

47

9 The Grail Castle Test: Mastering ‘If’ Statements

48

10 The Grail Castle Test: Mastering ‘Elif’ and
‘Else’ Statements

In our previous lesson, we learned about ‘if’ statements. Today, we’ll expand our magical arsenal with
‘elif’ (else if) and ‘else’ statements. These powerful constructs will allow our code to make more complex
decisions, just as a knight must navigate through a series of challenges in their quest.

10.1 Introducing ‘Else’: The Alternative Path

Sometimes in our quests, we want to do one thing if a condition is true, and something else if it’s not. This
is where the ‘else’ statement comes in. It provides an alternative path for our code when the ‘if’ condition
is false.

Here’s the structure of an ‘if-else’ statement:

if condition:

Code to execute if the condition is True

else:

Code to execute if the condition is False

Let’s see an example:

has_sword = False

if has_sword:

print("You draw your sword, ready for battle!")

else:

print("You reach for your sword, but realize you don't have one!")

print("The adventure continues...")

If has_sword is False, this will output:

You reach for your sword, but realize you don't have one!

The adventure continues...

49

10 The Grail Castle Test: Mastering ‘Elif’ and ‘Else’ Statements

10.2 The Power of ‘Elif’: Multiple Conditions

But what if we have more than two possibilities? This is where ‘elif’ (short for “else if”) comes in. It allows
us to check multiple conditions in sequence.

Here’s the structure of an ‘if-elif-else’ statement:

if condition1:

Code to execute if condition1 is True

elif condition2:

Code to execute if condition1 is False and condition2 is True

elif condition3:

Code to execute if condition1 and condition2 are False and condition3 is True

else:

Code to execute if all conditions are False

Let’s see a practical example:

knight_rank = "squire"

if knight_rank == "knight":

print("Welcome, brave knight! You may enter the castle.")

elif knight_rank == "squire":

print("Greetings, young squire. You may enter the training grounds.")

elif knight_rank == "wizard":

print("Ah, a wizard! The magic tower awaits you.")

else:

print("Halt! You are not authorized to enter.")

print("The castle gates close behind you.")

This will output:

Greetings, young squire. You may enter the training grounds.

The castle gates close behind you.

10.3 Combining ‘If’, ‘Elif’, and ‘Else’ with Logical Operators

We can create even more complex decision structures by combining these statements with logical opera-
tors:

50

10.4 The Importance of Order in ‘Elif’ Statements

has_sword = True

has_shield = False

has_magic = True

if has_sword and has_shield:

print("You are well-equipped for close combat!")

elif has_sword and has_magic:

print("You can fight with sword and sorcery!")

elif has_magic:

print("You rely on your magical abilities.")

else:

print("You might want to visit the equipment shop.")

print("Prepare for your next battle!")

This will output:

You can fight with sword and sorcery!

Prepare for your next battle!

10.4 The Importance of Order in ‘Elif’ Statements

The order of ‘elif’ statements matters! Python checks conditions from top to bottom and executes the
first block where the condition is true. Consider this example:

player_score = 95

if player_score > 90:

print("You earned an A!")

elif player_score > 80:

print("You earned a B!")

elif player_score > 70:

print("You earned a C!")

else:

print("You need to study more.")

print("Keep up the good work!")

This will output:

51

10 The Grail Castle Test: Mastering ‘Elif’ and ‘Else’ Statements

You earned an A!

Keep up the good work!

Even though the score is also greater than 80 and 70, only the first true condition (score > 90) is exe-
cuted.

10.5 Practice Your ‘Elif’ and ‘Else’ Magic

Now it’s your turn to practice these conditional spells:

1. Create a variable player_health and set it to a number between 0 and 100. Write an ‘if-elif-else’
statement that prints “Full health!” if it’s 100, “Injured!” if it’s between 1 and 99, and “Game
Over!” if it’s 0.

2. Make a variable weapon and set it to either “sword”, “bow”, or “wand”. Use an ‘if-elif-else’ statement
to print a unique message for each weapon, with a default message for any other weapon.

3. Create variables has_key and has_potion. Write an ‘if-elif-else’ statement that checks if the
player has both, only one, or neither of these items, with appropriate messages for each case.

4. Write a program that takes a numerical grade (0-100) and converts it to a letter grade (A, B, C, D,
F) using ‘if-elif-else’ statements.

Here’s a starting point for your practice:

Quest 1: Health Check

player_health = 75 # Change this value to test your code

Your code here

Quest 2: Weapon Choice

weapon = "bow" # Change this to test different weapons

Your code here

Quest 3: Inventory Check

has_key = True

has_potion = False

Your code here

Quest 4: Grade Converter

numerical_grade = 88 # Change this to test different grades

Your code here

52

10.6 Common Bugs to Watch Out For

10.6 Common Bugs to Watch Out For

As you weave your ‘elif’ and ‘else’ statement spells, beware of these common pitfalls:

1. Forgetting colons: Each ‘if’, ‘elif’, and ‘else’ line should end with a colon :.
2. Incorrect indentation: All code blocks under ‘if’, ‘elif’, and ‘else’ must be indented.
3. Using ‘else if’ instead of ‘elif’: Python uses ‘elif’, not ‘else if’.
4. Overusing ‘elif’: If you have many ‘elif’ statements, consider using a dictionary or match statement

(in Python 3.10+) instead.
5. Redundant conditions: In ‘elif’ chains, don’t repeat checks that are implied by previous conditions.

10.7 Conclusion and Further Resources

You’ve now mastered the art of ‘elif’ and ‘else’ statements, expanding your ability to create complex
decision-making structures in your code. Your programs can now navigate through multiple conditions,
choosing the right path based on different scenarios.

To further enhance your conditional statement skills, check out these valuable resources:

1. Python Official Documentation on if Statements
2. Real Python’s Python Conditional Statements
3. Programiz Python if…else Statement Remember, the key to mastering these concepts is practice.

Keep experimenting with different combinations of ‘if’, ‘elif’, and ‘else’ statements, and soon
you’ll be crafting intricate decision trees in your code with ease. Onward to your next Python
adventure!

53

https://docs.python.org/3/tutorial/controlflow.html#if-statements
https://realpython.com/python-conditional-statements/
https://www.programiz.com/python-programming/if-elif-else

10 The Grail Castle Test: Mastering ‘Elif’ and ‘Else’ Statements

54

11 The Grail Castle’s Labyrinth: Mastering
Nested Conditional Statements

Welcome back, intrepid Python knights! In our previous lessons, we learned about ‘if’, ‘elif’, and ‘else’
statements. Today, we’ll venture deeper into the Grail Castle’s labyrinth by exploring nested conditional
statements. These complex structures will allow our code to make decisions within decisions, much like
navigating through a maze of challenges in your quest.

11.1 What are Nested Conditional Statements?

Nested conditional statements are simply conditional statements inside other conditional statements.
They allow us to check for conditions within conditions, creating more complex decision trees in our
code.

Here’s a basic structure of nested conditionals:

if outer_condition:

Code to execute if outer_condition is True

if inner_condition:

Code to execute if both outer_condition and inner_condition are True

else:

Code to execute if outer_condition is True but inner_condition is False

else:

Code to execute if outer_condition is False

11.2 A Simple Example: The Enchanted Forest

Let’s start with a simple example to illustrate nested conditionals:

is_in_forest = True

has_lantern = False

if is_in_forest:

print("You are in the enchanted forest.")

if has_lantern:

55

11 The Grail Castle’s Labyrinth: Mastering Nested Conditional Statements

print("Your lantern illuminates the path ahead.")

else:

print("It's too dark to see. You need a lantern!")

else:

print("You are not in the forest. The adventure awaits!")

If we run this code, it will output:

You are in the enchanted forest.

It's too dark to see. You need a lantern!

11.3 Complex Nested Structures: The Dragon’s Lair

Now, let’s create a more complex scenario using nested if, elif, and else statements:

has_sword = True

has_shield = False

has_magic = True

dragon_asleep = False

if dragon_asleep:

print("The dragon is asleep. You can sneak past!")

else:

print("The dragon is awake! You must face it!")

if has_sword:

if has_shield:

print("With sword and shield, you bravely fight the dragon!")

elif has_magic:

print("You combine your sword and magic for a powerful attack!")

else:

print("You attack with your sword, but you're vulnerable without a shield.")

elif has_magic:

print("You cast a powerful spell at the dragon!")

else:

print("Without weapons or magic, you must retreat!")

If we run this code with the given variables, it will output:

The dragon is awake! You must face it!

You combine your sword and magic for a powerful attack!

56

11.4 The Importance of Indentation

11.4 The Importance of Indentation

In Python, indentation is crucial, especially with nested conditionals. Each level of nesting is indicated by
an increased indentation. This makes the code structure visually clear:

player_level = 5

has_magic_key = True

has_dragon_scale = False

if player_level >= 5:

print("You're experienced enough to enter the tower.")

if has_magic_key:

print("You use the magic key to open the door.")

if has_dragon_scale:

print("The dragon scale glows, revealing a secret passage!")

else:

print("You enter the main hall of the tower.")

else:

print("But you need a magic key to enter.")

else:

print("You need to be at least level 5 to enter the tower.")

11.5 Combining Nested Conditionals with Logical Operators

We can make our nested conditionals even more powerful by combining them with logical operators:

is_day = True

has_torch = False

is_vampire = False

if is_day:

if not is_vampire:

print("You can explore safely during the day.")

else:

print("As a vampire, you should find shelter quickly!")

else:

if has_torch or not is_vampire:

print("You can navigate through the night.")

else:

print("It's too dark to explore without a torch.")

57

11 The Grail Castle’s Labyrinth: Mastering Nested Conditional Statements

11.6 Practice Your Nested Conditional Magic

Now it’s your turn to practice these complex conditional spells:

1. Create a nested conditional structure for a game character entering a dungeon. Check for the
character’s level (should be at least 10), whether they have a key, and if they have either a sword or
magic. Print appropriate messages for each condition.

2. Write a program for a simple RPG combat system. Check if it’s the player’s turn, if they choose
to attack or defend, and if they have enough energy for their action. Use nested conditionals to
determine the outcome.

3. Create a weather advisory system. Check if it’s rainy, windy, or sunny, and then check the temper-
ature for each weather condition. Provide appropriate advice for each combination.

4. Design a nested conditional structure for a choose-your-own-adventure story. Have at least three
levels of decisions that lead to different outcomes.

Here’s a starting point for your practice:

Quest 1: Dungeon Entry

character_level = 12

has_key = True

has_sword = False

has_magic = True

Your code here

Quest 2: RPG Combat System

player_turn = True

action_choice = "attack" # or "defend"

player_energy = 50

Your code here

Quest 3: Weather Advisory

is_rainy = False

is_windy = True

is_sunny = False

temperature = 15 # in Celsius

Your code here

Quest 4: Choose Your Own Adventure

Create your own variables and nested conditional structure here

58

11.7 Common Bugs to Watch Out For

11.7 Common Bugs to Watch Out For

As you delve into the depths of nested conditionals, beware of these common pitfalls:

1. Improper indentation: Incorrect indentation can completely change the logic of your code. Be
consistent with your indentation.

2. Forgetting to close conditionals: Make sure each ‘if’ has a corresponding ‘else’ if needed. It’s easy
to forget the ‘else’ in deeply nested structures.

3. Overly complex nesting: If you find yourself nesting too deeply (more than 3 or 4 levels), consider
refactoring your code. You might be able to simplify your logic or use functions to make it more
readable.

4. Redundant conditions: In nested structures, you might accidentally check for conditions that are
already implied by outer conditions.

5. Using ‘else’ with the wrong ‘if’: In complex structures, make sure your ‘else’ statements are paired
with the correct ‘if’ statements.

11.8 Conclusion and Further Resources

You’ve now mastered the intricate art of nested conditional statements. With this knowledge, your code
can make complex decisions, navigating through multiple layers of conditions like a true adventurer in a
labyrinth of choices.

To further enhance your mastery of nested conditionals and complex decision structures, check out these
resources:

1. Real Python’s Python Conditional Statements
2. Python Official Documentation on Compound Statements
3. Codecademy’s Learn Python 3 Course (Control Flow section)

Remember, while nested conditionals are powerful, clear and simple code is often the best. As you prac-
tice, strive for a balance between complexity and readability. Keep refining your skills, and soon you’ll
be crafting elegant solutions to even the most complex logical challenges. Onward to your next Python
quest!

59

https://realpython.com/python-conditional-statements/
https://docs.python.org/3/reference/compound_stmts.html
https://www.codecademy.com/learn/learn-python-3

11 The Grail Castle’s Labyrinth: Mastering Nested Conditional Statements

60

12 Python Lists: Creating Your Inventory

Today, we embark on a quest tomaster one of Python’s most powerful data structures: lists. Just as a knight
needs an inventory to keep track of their possessions, Python uses lists to store and organizemultiple items.
Let’s uncover the world of Python lists and learn how to create, access, and perform basic operations on
our digital inventories!

12.1 What is a List?

In Python, a list is a collection of items, much like a backpack in an adventure game. It can hold various
types of items (strings, numbers, even other lists!) and keeps them in a specific order. Lists are incredibly
versatile and are used in almost every Python program.

12.2 Creating a List

To create a list in Python, we use square brackets [] and separate the items with commas. Let’s create a
simple inventory for our adventure:

inventory = ["sword", "shield", "health potion", "map"]

print(inventory)

This will output:

['sword', 'shield', 'health potion', 'map']

Congratulations! You’ve just created your first Python list.

Lists can contain different types of data:

hero_stats = ["Parzival", 100, True, 3.14]

print(hero_stats)

Output:

['Parzival', 100, True, 3.14]

Here, we have a string (name), an integer (health points), a boolean (is_alive), and a float (pi) all in one
list!

61

12 Python Lists: Creating Your Inventory

12.3 Accessing List Elements

Now that we have our inventory, how do we check what’s inside? In Python, we can access list elements
using their index. Remember, Python uses zero-based indexing, which means the first item is at index 0,
the second at index 1, and so on.

Let’s access some items from our inventory:

inventory = ["sword", "shield", "health potion", "map"]

print(inventory[0]) # First item

print(inventory[2]) # Third item

Output:

sword

health potion

Think of indices like the pockets in your backpack. The first pocket (index 0) contains your sword, the
third pocket (index 2) contains your health potion.

12.4 Negative Indexing

Python also allows negative indexing, which starts from the end of the list. The last item is at index -1, the
second-to-last at -2, and so on.

print(inventory[-1]) # Last item

print(inventory[-3]) # Third-to-last item

Output:

map

shield

12.5 Getting the Length of a List

To find out how many items are in your inventory, you can use the len() function:

inventory_size = len(inventory)

print(f"You are carrying {inventory_size} items.")

62

12.6 Checking if an Item is in the List

Output:

You are carrying 4 items.

The len() function is incredibly useful when you need to know the size of your list, especially in loops or
conditions.

12.6 Checking if an Item is in the List

Sometimes, you need to know if a specific item is in your inventory. Python makes this easy with the in

keyword:

if "sword" in inventory:

print("Sword is in inventory")

else:

print("No sword in inventory")

…or another way…

has_sword = "sword" in inventory

has_bow = "bow" in inventory

print(f"Do you have a sword? {has_sword}")

print(f"Do you have a bow? {has_bow}")

Output:

Do you have a sword? True

Do you have a bow? False

This is incredibly useful for quick checks without needing to search through the entire list manually.

12.7 Changing List Elements

Unlike strings, lists are mutable, meaning we can change their elements after creating them. Let’s upgrade
our sword:

inventory[0] = "magic sword"

print(inventory)

Output:

63

12 Python Lists: Creating Your Inventory

['magic sword', 'shield', 'health potion', 'map']

12.8 Practice Time: Manage Your Inventory

Now it’s your turn to create and manage your own inventory. Complete these quests:

1. Create a list called magic_spells with at least 5 spell names.
2. Print the first and last spell in your list.
3. Replace the third spell with a new, more powerful spell.
4. Print the total number of spells you know.
5. Check if “fireball” is in your list of spells.

Here’s a starting point for your quest:

Quest 1: Create your spell list

magic_spells = ["fireball", "ice shard", "lightning bolt", "heal", "invisibility"]

Quest 2: Print first and last spell

Your code here

Quest 3: Replace the third spell

Your code here

Quest 4: Print total number of spells

Your code here

Quest 5: Check for "fireball" spell

Your code here

12.9 Common Bugs to Watch Out For

As you experiment with lists, be wary of these common pitfalls:

1. Index out of range: Trying to access an index that doesn’t exist will raise an IndexError. Remember,
if a list has 4 items, the valid indices are 0, 1, 2, and 3.

inventory = ["sword", "shield", "potion"]

print(inventory[3]) # IndexError: list index out of range

2. Forgetting that indexing starts at 0: The first element is at index 0, not 1.

3. Case sensitivity with in: The in keyword is case-sensitive for strings.

64

12.10 Conclusion and Further Resources

"Sword" in inventory # This might be False even if "sword" is in the list

12.10 Conclusion and Further Resources

You’ve now learned how to create lists, access their elements, check for item existence, get list length, and
modify list contents. These skills will be crucial as you continue your Python journey, allowing you to
organize and manipulate data with ease.

To further enhance your list manipulation skills, check out these excellent resources:

1. Python Official Documentation on Lists - The official Python guide to lists.
2. Real Python’s Python Lists and Tuples - An in-depth tutorial on Python lists.
3. W3Schools Python Lists - Interactive examples and exercises to practice list operations.

Remember, mastering lists is like learning to manage your inventory in a grand adventure. Keep practic-
ing, and soon you’ll be wielding the power of Python lists like a true coding wizard! In our next lesson,
we’ll explore more advanced list operations, including methods for modifying lists. Until then, may your
inventories be ever organized and your code bug-free!

65

https://docs.python.org/3/tutorial/introduction.html#lists
https://realpython.com/python-lists-tuples/
https://www.w3schools.com/python/python_lists.asp

12 Python Lists: Creating Your Inventory

66

13 Python Lists: Modifying Your Inventory

In our last quest, we learned how to create lists and access their elements. Today, we’ll learn the magic of
modifying these lists. Just as a skilled adventurer must know how to add to, remove from, and reorganize
their inventory, a Python programmer must master the art of list manipulation. Let’s dive in!

13.1 Adding Elements to a List

13.2 The append()Method: Adding to the End

The append() method adds an item to the end of the list. It’s like putting a new item in the last pocket of
your backpack:

inventory = ["sword", "shield", "health potion"]

inventory.append("magic wand")

print(inventory)

Output:

['sword', 'shield', 'health potion', 'magic wand']

13.3 The insert()Method: Adding at a Specific Position

The insert() method allows you to add an item at a specific position in the list. It takes two arguments:
the index where you want to insert the item, and the item itself.

inventory.insert(1, "armor")

print(inventory)

Output:

['sword', 'armor', 'shield', 'health potion', 'magic wand']

67

13 Python Lists: Modifying Your Inventory

13.4 Removing Elements from a List

13.5 The remove()Method: Removing a Specific Item

The remove() method removes the first occurrence of a specific item from the list:

inventory.remove("health potion")

print(inventory)

Output:

['sword', 'armor', 'shield', 'magic wand']

13.6 The pop()Method: Removing and Returning an Item

The pop()method removes and returns an item at a specific index. If no index is specified, it removes and
returns the last item:

last_item = inventory.pop()

print(f"Used {last_item}")

print(inventory)

first_item = inventory.pop(0)

print(f"Lost {first_item} in battle")

print(inventory)

Output:

Used magic wand

['sword', 'armor', 'shield']

Lost sword in battle

['armor', 'shield']

13.7 Extending a List

The extend() method allows you to add all elements from one list to another:

new_items = ["bow", "arrows", "horse"]

inventory.extend(new_items)

print(inventory)

68

13.8 Clearing a List

Output:

['armor', 'shield', 'bow', 'arrows', 'horse']

13.8 Clearing a List

To remove all items from a list, use the clear() method:

inventory.clear()

print(inventory)

Output:

[]

13.9 Counting Occurrences of an Item

The count() method returns the number of times an item appears in the list:

gems = ["ruby", "emerald", "sapphire", "ruby", "diamond", "ruby"]

ruby_count = gems.count("ruby")

print(f"You have {ruby_count} rubies")

Output:

You have 3 rubies

13.10 Finding the Index of an Item

The index() method returns the index of the first occurrence of an item:

sapphire_index = gems.index("sapphire")

print(f"The sapphire is at index {sapphire_index}")

Output:

The sapphire is at index 2

69

13 Python Lists: Modifying Your Inventory

13.11 Sorting a List

The sort() method sorts the list in ascending order (for numbers) or alphabetical order (for strings):

gems.sort()

print(gems)

Output:

['diamond', 'emerald', 'ruby', 'ruby', 'ruby', 'sapphire']

To sort in descending order, use the reverse=True argument:

gems.sort(reverse=True)

print(gems)

Output:

['sapphire', 'ruby', 'ruby', 'ruby', 'emerald', 'diamond']

13.12 Reversing a List

The reverse() method reverses the order of the list:

inventory = ["sword", "shield", "armor", "potion"]

inventory.reverse()

print(inventory)

Output:

['potion', 'armor', 'shield', 'sword']

13.13 Practice Time: Manage Your Magical Armory

Now it’s your turn to modify and manipulate lists. Complete these quests:

1. Create a list called magical_weapons with at least 5 weapons.
2. Add a new weapon to the end of the list.
3. Insert a weapon at the beginning of the list.
4. Remove a specific weapon from the list.

70

13.14 Common Bugs to Watch Out For

5. Sort the weapons in alphabetical order.
6. Count how many times a specific weapon appears in the list.

Here’s a starting point for your quest:

Quest 1: Create your magical weapons list

magical_weapons = ["Excalibur", "Mjolnir", "Elder Wand", "Sting", "Longclaw"]

Quest 2: Add a new weapon to the end

Your code here

Quest 3: Insert a weapon at the beginning

Your code here

Quest 4: Remove a specific weapon

Your code here

Quest 5: Sort the weapons

Your code here

Quest 6: Count occurrences of a weapon

Your code here

13.14 Common Bugs to Watch Out For

As you experiment with modifying lists, be wary of these common pitfalls:

1. Modifying a list while iterating: If you’re looping through a list and modifying it at the same time,
you might get unexpected results. It’s often safer to create a new list with the modifications.

2. Remove() raises an error if the item isn’t found: If you try to remove an item that’s not in the list,
Python will raise a ValueError.

inventory = ["sword", "shield"]

inventory.remove("potion") # ValueError: list.remove(x): x not in list

3. Pop() with an invalid index: Using pop() with an index that doesn’t exist will raise an IndexError.

4. Sort() doesn’t return a new list: The sort() method modifies the original list and returns None.
Don’t try to assign its result to a new variable.

sorted_inventory = inventory.sort() # This doesn't work as expected

5. Forgetting that strings are case-sensitive: When sorting or searching, remember that “Sword” and
“sword” are different.

71

13 Python Lists: Modifying Your Inventory

13.15 Conclusion and Further Resources

You’ve now learned how to modify and manipulate lists in Python. These skills will allow you to dynami-
cally manage collections of data in your programs, just as a skilled adventurer manages their inventory.

To further enhance your list manipulation skills, check out these excellent resources:

1. Python Official Documentation on Lists - The official Python guide to list operations.
2. Real Python’s Python Lists andTuples - An in-depth tutorial on Python lists, includingmodification

methods.
3. W3Schools Python List Methods - A comprehensive list of Python list methods with examples.

Remember, mastering list manipulation is like becoming a skilled quartermaster in your coding adventure.
Keep practicing these techniques, and soon you’ll be managing complex data structures with ease. In our
next lesson, we’ll explore the powerful technique of list slicing. Until then, may your lists be ever flexible
and your code ever efficient!

72

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://realpython.com/python-lists-tuples/
https://www.w3schools.com/python/python_lists_methods.asp

14 Python Lists: The Art of Slicing

In our previous quests, we learned how to create lists, access their elements, and modify them. Today,
we embark on a new adventure to master the art of list slicing. Just as a skilled chef can precisely cut
ingredients, a Python programmer must learn to slice lists with finesse. This powerful technique will
allow you to extract specific portions of your lists with ease. Let’s sharpen our coding blades and dive
in!

14.1 What is List Slicing?

List slicing is a way to extract a portion of a list, creating a new list in the process. It’s like using a magical
blade that can cut through your inventory and pull out exactly the items you need. The basic syntax for
slicing is:

list[start:end]

This creates a new list containing elements from index start up to, but not including, index end.

14.2 Basic Slicing

Let’s start with a simple example. Imagine you have a list of potions in your inventory:

potions = ["Health", "Mana", "Strength", "Invisibility", "Fire Resistance"]

print(potions[1:4])

Output:

['Mana', 'Strength', 'Invisibility']

In this example, we’ve extracted potions from index 1 to 3 (remember, the end index is not included).

73

14 Python Lists: The Art of Slicing

14.3 Omitting Start or End Indices

If you omit the start index, the slice begins at the start of the list. If you omit the end index, the slice goes
to the end of the list.

print(potions[:3]) # From start to index 2

print(potions[2:]) # From index 2 to end

Output:

['Health', 'Mana', 'Strength']

['Strength', 'Invisibility', 'Fire Resistance']

14.4 Negative Indices in Slices

Just like with regular indexing, you can use negative indices in slices. This is useful when you want to slice
relative to the end of the list.

print(potions[-3:]) # Last 3 potions

print(potions[:-2]) # All but the last 2 potions

Output:

['Strength', 'Invisibility', 'Fire Resistance']

['Health', 'Mana', 'Strength']

14.5 Slicing with a Step

You can also specify a step in your slice, which determines how many indices to move forward after each
element is selected. The syntax is:

list[start:end:step]

Let’s see it in action:

weapons = ["Sword", "Bow", "Axe", "Mace", "Dagger", "Spear", "Wand"]

print(weapons[::2]) # Every second weapon

print(weapons[1::2]) # Every second weapon, starting from index 1

Output:

74

14.6 Reversing a List with Slicing

['Sword', 'Axe', 'Dagger', 'Wand']

['Bow', 'Mace', 'Spear']

14.6 Reversing a List with Slicing

A neat trick with slicing is that you can easily reverse a list by using a step of -1:

print(weapons[::-1])

Output:

['Wand', 'Spear', 'Dagger', 'Mace', 'Axe', 'Bow', 'Sword']

14.7 Creating a Copy of a List

You can create a shallow copy of a list by using a full slice:

inventory_copy = weapons[:]

print(inventory_copy)

Output:

['Sword', 'Bow', 'Axe', 'Mace', 'Dagger', 'Spear', 'Wand']

This creates a new list with the same elements as the original.

14.8 Modifying Lists with Slices

You can also use slicing to modify parts of a list:

weapons[1:4] = ["Longbow", "Battle Axe", "Warhammer"]

print(weapons)

Output:

['Sword', 'Longbow', 'Battle Axe', 'Warhammer', 'Dagger', 'Spear', 'Wand']

75

14 Python Lists: The Art of Slicing

14.9 Practice Time: Master the Art of Slicing

Now it’s your turn to practice your list slicing skills. Complete these quests:

1. Create a list called armor with at least 7 types of armor.
2. Extract the first 3 armor types.
3. Extract the last 3 armor types.
4. Create a new list with every second armor type.
5. Reverse the order of the armor list using slicing.
6. Replace the middle 3 armor types with new ones using slicing.

Here’s a starting point for your quest:

Quest 1: Create your armor list

armor = ["Leather", "Chainmail", "Plate", "Scale", "Studded Leather", "Splint", "Half Plate"]

Quest 2: Extract first 3 armor types

Your code here

Quest 3: Extract last 3 armor types

Your code here

Quest 4: Every second armor type

Your code here

Quest 5: Reverse the armor list

Your code here

Quest 6: Replace middle 3 armor types

Your code here

14.10 Common Bugs to Watch Out For

As you practice your slicing skills, be wary of these common pitfalls:

1. Off-by-one errors: Remember, the end index in a slice is not included. list[1:3] gives you elements
at index 1 and 2, not 1, 2, and 3.

2. Modifying the original list: Slicing creates a new list, but assigning to a slice modifies the original
list.

new_list = weapons[:] # Creates a new list

weapons[:] = new_list # Modifies the original list

3. Confusing step with length: In list[::2], 2 is the step, not the number of elements to select.

76

14.11 Conclusion and Further Resources

4. Using floats in slices: Slice indices must be integers or None.

weapons[1.5:3] # This will raise a TypeError

5. Slicing beyond list bounds: Python handles this gracefully by stopping at the list’s end, but it might
not always give you what you expect.

print(weapons[5:100]) # This works, but might give fewer items than expected

14.11 Conclusion and Further Resources

You’ve now learned the art of list slicing in Python. This powerful technique allows you to manipulate lists
with precision, extracting exactly the elements you need. As you continue your Python journey, you’ll find
that slicing is an invaluable tool in many programming scenarios.

To further hone your list slicing skills, check out these excellent resources:

1. Python Official Documentation on Slicing - The official Python guide, which includes information
on slicing.

2. Real Python’s Guide to Python Slicing - An in-depth tutorial on list slicing.
3. Python Practice Book - Slicing - Additional exercises to practice your slicing skills.

Remember, mastering list slicing is like honing a finely crafted blade - it takes practice to achieve precision.
Keep experimenting with different slice combinations, and soon you’ll be wielding Python lists with the
skill of a true coding warrior. May your slices be ever precise and your code ever efficient!

77

https://docs.python.org/3/tutorial/introduction.html#lists
https://realpython.com/python-lists-tuples/#slicing-lists-and-tuples
https://anandology.com/python-practice-book/sequences.html#slicing

14 Python Lists: The Art of Slicing

78

15 Python Tuples: Immutable Treasures

In our previous quests, wemastered the art of creating, modifying, and slicing lists. Today, we embark on a
new adventure to explore a close cousin of lists: tuples. Think of tuples as magical, unbreakable containers
that hold your treasures safe and sound. Let’s uncover the secrets of these immutable collections!

15.1 What are Tuples?

Tuples are ordered, immutable sequences of elements. In simpler terms, they’re like lists that can’t be
changed once created. Imagine a treasure chest that, once sealed, cannot be opened or altered - that’s a
tuple!

The key differences between tuples and lists are:

1. Tuples use parentheses () instead of square brackets [].
2. Tuples are immutable - you can’t add, remove, or change their elements after creation.

15.2 Creating Tuples

Let’s create some tuples to store our adventure stats:

A tuple of a hero's stats

hero_stats = ("Eldrin", "Elf", 100, "Archer")

A tuple of magical elements

elements = ("Fire", "Water", "Earth", "Air")

Even a single item tuple (note the comma!)

singleton = ("Solo adventurer",)

print(hero_stats)

print(elements)

print(singleton)

Output:

79

15 Python Tuples: Immutable Treasures

('Eldrin', 'Elf', 100, 'Archer')

('Fire', 'Water', 'Earth', 'Air')

('Solo adventurer',)

Note: For a single-item tuple, you need a trailing comma. Without it, Python treats it as a regular paren-
thesized expression.

15.3 Accessing Tuple Elements

You can access tuple elements just like list elements, using indexing:

print(hero_stats[0]) # Hero's name

print(elements[-1]) # Last element

Output:

Eldrin

Air

You can also use slicing with tuples, just like with lists:

print(hero_stats[1:3]) # Race and health

Output:

('Elf', 100)

15.4 Tuple Packing and Unpacking

Tuple packing is the process of creating a tuple from several values. Tuple unpacking is the reverse -
assigning tuple elements to multiple variables at once.

Tuple packing

quest = "Save the Kingdom", "Defeat the Dragon", 3, "High"

Tuple unpacking

name, race, health, class_type = hero_stats

print(quest)

print(f"Hero: {name}, Race: {race}, Health: {health}, Class: {class_type}")

80

15.5 Tuple Methods

Output:

('Save the Kingdom', 'Defeat the Dragon', 3, 'High')

Hero: Eldrin, Race: Elf, Health: 100, Class: Archer

15.5 Tuple Methods

Tuples have two built-in methods:

1. count(): Returns the number of times a specified value occurs in the tuple.
2. index(): Searches the tuple for a specified value and returns its position.

gemstones = ("Ruby", "Sapphire", "Emerald", "Ruby", "Diamond")

print(gemstones.count("Ruby"))

print(gemstones.index("Emerald"))

Output:

2

2

15.6 When to Use Tuples Instead of Lists

Use tuples when you have a collection of items that shouldn’t change throughout your program. Some
common use cases:

1. Coordinates (x, y)
2. RGB color values
3. Database records
4. Function return values with multiple items

Examples of good tuple usage

coordinates = (33.7490, 84.3880) # Atlanta's coordinates

rgb_color = (255, 0, 0) # Red in RGB

db_record = ("001", "Excalibur", "Legendary Sword", 1000)

81

15 Python Tuples: Immutable Treasures

15.7 Practice Time: Master the Art of Tuples

Now it’s your turn to practice working with tuples. Complete these quests:

1. Create a tuple called player_info with a character’s name, class, level, and favorite weapon.
2. Access and print the character’s class and level.
3. Create a tuple of magical creatures and use the count() method to find how many times “Dragon”

appears.
4. Try to modify an element in your player_info tuple. What happens?

Here’s a starting point for your quest:

Quest 1: Create player_info tuple

player_info = # Your code here

Quest 2: Access class and level

Your code here

Quest 3: Count magical creatures

magical_creatures = ("Dragon", "Unicorn", "Phoenix", "Dragon", "Griffon", "Dragon")

Your code here

Quest 4: Try to modify the tuple

Your code here

15.8 Common Bugs to Watch Out For

As you work with tuples, be wary of these common pitfalls:

1. Forgetting the comma in single-item tuples: Without the comma, it’s not a tuple!

not_a_tuple = ("Single item") # This is just a string

is_a_tuple = ("Single item",) # This is a tuple

2. Trying to modify a tuple: Tuples are immutable. Operations that work on lists won’t work on
tuples.

my_tuple = (1, 2, 3)

my_tuple[0] = 4 # This will raise a TypeError

3. Confusing tuple packing/unpacking syntax: Make sure you have the right number of variables when
unpacking.

a, b, c = (1, 2, 3, 4) # This will raise a ValueError

82

15.9 Conclusion and Further Resources

4. Forgetting that tuples are immutable: If you need to modify the data, you might need to convert
to a list first.

my_tuple = (1, 2, 3)

my_list = list(my_tuple) # Convert to list

my_list[0] = 4 # Modify the list

my_tuple = tuple(my_list) # Convert back to tuple

5. Using tuples where lists are more appropriate: If you find yourself frequently converting tuples to
lists and back, you might want to use a list instead.

15.9 Conclusion and Further Resources

You’ve now mastered the art of working with these immutable treasures in Python. Tuples provide a way
to group related data that shouldn’t change, adding an extra layer of security to your code. To further
enhance your tuple manipulation skills, check out these excellent resources:

1. Python Official Documentation on Tuples - The official Python guide to tuples and sequences.
2. Real Python’s Python Lists and Tuples - An in-depth tutorial comparing lists and tuples.
3. Python Practice Book - Tuples - Additional exercises to practice your tuple skills.

Remember, while tuples might seem less flexible than lists at first, their immutability makes them perfect
for certain tasks. As you continue your Python journey, you’ll discover many situations where tuples are
the ideal choice. May your tuples always be intact and your code ever reliable!

83

https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://realpython.com/python-lists-tuples/
https://anandology.com/python-practice-book/sequences.html#tuples

15 Python Tuples: Immutable Treasures

84

16 The Magic of Merlin: Importing Libraries -
The Random Library

Today, we embark on a new quest to unlock the secrets of Python libraries. Just as Merlin’s spell books
contained powerful magic, Python libraries are collections of pre-written code that can greatly enhance
your programming powers. Let’s learn how to access these magical tomes, starting with the enchanting
random library!

16.1 What are Python Libraries?

Imagine you’re in Merlin’s grand library. Each book on the shelves contains different spells and magical
knowledge. In the world of Python, libraries are like these spell books. They contain pre-written code
that performs specific functions, saving you time and effort in your coding adventures.

16.2 The import Spell: Accessing Library Powers

To use a Python library, we need to import it into our code. This is like taking a spell book off the shelf
and opening it. The basic syntax for importing a library is:

import library_name

Let’s start with the random library, which will allow us to add elements of chance to our programs:

import random

Generate a random number between 1 and 10

magic_number = random.randint(1, 10)

print(f"The magic number is: {magic_number}")

This might output:

The magic number is: 7

Every time you run this code, you’ll likely get a different number. It’s like rolling a 10-sided die!

85

16 The Magic of Merlin: Importing Libraries - The Random Library

16.3 Exploring the Random Library

The random library has many useful functions. Let’s look at three of the most common ones:

16.4 1. randint(): Generating Random Integers

We’ve already seen randint() in action. It generates a random integer between two values, inclusive:

import random

Simulate rolling a six-sided die

die_roll = random.randint(1, 6)

print(f"You rolled a {Magic of Merlin: Importing Libraries}!")

16.5 2. choice(): Randomly Selecting from a List

The choice() function randomly selects an item from a list:

import random

magical_creatures = ["Dragon", "Unicorn", "Phoenix", "Griffon", "Mermaid"]

chosen_creature = random.choice(magical_creatures)

print(f"You've encountered a {Magic of Merlin: Importing Libraries}!")

16.6 3. shuffle(): Randomly Reordering a List

The shuffle() function randomly reorders the items in a list:

import random

spell_components = ["Newt eyes", "Dragon scales", "Pixie dust", "Troll hair"]

print("Original order:", spell_components)

random.shuffle(spell_components)

print("Shuffled order:", spell_components)

This might output:

86

16.7 The from ... import Incantation: Selecting Specific Spells

Original order: ['Newt eyes', 'Dragon scales', 'Pixie dust', 'Troll hair']

Shuffled order: ['Pixie dust', 'Troll hair', 'Newt eyes', 'Dragon scales']

16.7 The from ... import Incantation: Selecting Specific Spells

Sometimes, you only need one or two specific functions from a library. In this case, you can use the from
... import syntax:

from random import randint, choice

Now we can use these functions without the 'random.' prefix

lucky_number = randint(1, 100)

tarot_card = choice(["The Fool", "The Magician", "The High Priestess", "The Empress", "The Emperor"])

print(f"Your lucky number is {Magic of Merlin: Importing Libraries}, and your tarot card is {tarot_card}.")

16.8 Renaming with the as Charm: Creating Aliases

Sometimes, library names can be long or might conflict with other names in your code. Python allows
you to create aliases using the as keyword:

import random as rnd

coin_flip = rnd.choice(["Heads", "Tails"])

print(f"The coin landed on: {coin_flip}")

Here, we’ve renamed random to rnd, making our code shorter.

16.9 Practice Your Library Magic

Now it’s your turn to practice importing and using the random library:

1. Import the random library and use randint() to simulate rolling two six-sided dice. Print the sum
of the dice rolls.

2. Create a list of at least 5 magical spells. Use choice() to randomly select and print one spell from
the list.

3. Make a list of the days of the week. Use shuffle() to randomly reorder the days, then print the new
order.

87

16 The Magic of Merlin: Importing Libraries - The Random Library

Here’s a starting point for your quests:

Quest 1: Rolling two dice

Your code here

Quest 2: Random spell selection

Your code here

Quest 3: Shuffling days of the week

Your code here

16.10 Common Bugs to Watch Out For

As you experiment with importing libraries, be wary of these common pitfalls:

1. Misspelling library names: Python won’t recognize improt random or import randum.
2. Forgetting to import: If you use a function without importing its library, you’ll get a NameError.
3. Using the wrong function: Make sure you’re using the right function for the task. For example, ran-

dom.randint(1, 6) works for a die roll, but random.random() would not (it returns a float between
0 and 1).

4. Modifying a shuffled list: random.shuffle() modifies the original list. If you need to keep the
original order, make a copy of the list before shuffling.

16.11 Conclusion and Further Resources

You’ve now learned the fundamental techniques for importing and using Python libraries, with a focus
on the versatile random library. This knowledge opens up a world of possibilities for adding elements of
chance and variety to your programs.

To deepen your understanding of Python libraries and the random module, check out these resources:

1. Python’s official documentation on the random module
2. Real Python’s guide to generating random data in Python
3. Python Module of the Week: random

Remember, with great power comes great responsibility. Use your newfound library powers wisely, and
may your code always run bug-free!

88

https://docs.python.org/3/library/random.html
https://realpython.com/python-random/
https://pymotw.com/3/random/

17 The Magic of Merlin: Built-in Math
Operations and the Math Library

In our previous lesson, we unlocked the secrets of the random library. Today, we’ll explore themagical world
of mathematical operations in Python. We’ll start with some powerful built-in operations that Python
provides out of the box, and then we’ll delve into the enchanted math library for even more mathematical
prowess!

17.1 Python’s Built-in Math Operations

Python comes with several built-in operations that can perform basic mathematical calculations. Let’s
explore three of the most commonly used ones:

17.2 min(): Finding the Minimum Value

The min() operation returns the smallest item in a sequence or the smallest of two or more arguments:

Finding the minimum of several numbers

lowest_score = min(85, 92, 78, 95, 88)

print("The lowest score is:", lowest_score)

Finding the minimum in a list

temperatures = [72, 75, 68, 70, 74]

coolest_temp = min(temperatures)

print("The coolest temperature is:", coolest_temp, "°F")

This will output:

The lowest score is: 78

The coolest temperature is: 68 °F

89

17 The Magic of Merlin: Built-in Math Operations and the Math Library

17.3 max(): Finding the Maximum Value

The max() operation does the opposite of min() - it returns the largest item in a sequence or the largest of
two or more arguments:

Finding the maximum of several numbers

highest_score = max(85, 92, 78, 95, 88)

print("The highest score is:", highest_score)

Finding the maximum in a list

temperatures = [72, 75, 68, 70, 74]

warmest_temp = max(temperatures)

print("The warmest temperature is:", warmest_temp, "°F")

This will output:

The highest score is: 95

The warmest temperature is: 75 °F

17.4 round(): Rounding Numbers

The round() operation returns a number rounded to the nearest integer:

Rounding to the nearest integer

print(round(3.7)) # Output: 4

print(round(3.3)) # Output: 3

Rounding with a specific number of decimal places

pi_approx = 3.14159

rounded_pi = round(pi_approx, 2)

print("Pi rounded to 2 decimal places:", rounded_pi)

price = 19.99

rounded_price = round(price)

print("Price rounded to nearest dollar: $" + str(rounded_price))

This will output:

4

3

Pi rounded to 2 decimal places: 3.14

Price rounded to nearest dollar: $20

90

17.5 The Math Library

17.5 The Math Library

While Python’s built-in operations are powerful, sometimes we need more advanced mathematical calcu-
lations. This is where the math library comes in handy. Let’s explore some of its most useful constants and
operations:

17.6 Importing the Math Library

Before we can use the math library, we need to import it:

import math

17.7 math.pi: The Pi Constant

The math library provides a highly precise value of pi:

import math

print("The value of pi is approximately", round(math.pi, 5))

This will output:

The value of pi is approximately 3.14159

17.8 math.floor(): Rounding Down

The floor() operation rounds a number down to the nearest integer:

import math

print(math.floor(4.7)) # Output: 4

print(math.floor(-4.7)) # Output: -5

17.9 math.ceil(): Rounding Up

The ceil() operation rounds a number up to the nearest integer:

91

17 The Magic of Merlin: Built-in Math Operations and the Math Library

import math

print(math.ceil(4.2)) # Output: 5

print(math.ceil(-4.2)) # Output: -4

17.10 math.sqrt(): Square Root

The sqrt() operation returns the square root of a number:

import math

print(math.sqrt(16)) # Output: 4.0

print(math.sqrt(2)) # Output: 1.4142135623730951

17.11 Practical Magic: Combining Built-in Operations and the Math
Library

Let’s create a program that uses both built-in operations and the math library to solve a problem:

import math

List of circle radii

radius = input("What is the radius of the circle? ")

Calculate areas

area = math.pi * radius ** 2

17.12 Practice Your Math Magic

Now it’s your turn to practice using both built-in operations and the math library:

1. Calculate the volume of a sphere with radius 5 using the formula V = (4/3) π r³. Use math.pi and
round() to display the result rounded to 2 decimal places.

2. Ask the user to input a number. Then, display both its square root (using math.sqrt()) and its value
rounded to the nearest integer (using round()).

Here’s a starting point for your quests:

92

17.13 Common Bugs to Watch Out For

import math

Quest 1: Min, Max, and Average

numbers = [3.14, 2.718, 1.414, 9.8, 6.022]

Your code here

Quest 2: Sphere Volume

radius = 5

Your code here

Quest 3: Square Root and Rounding

user_number = float(input("Enter a number: "))

Your code here

17.13 Common Bugs to Watch Out For

As you work with these mathematical operations, be aware of these potential pitfalls:

1. Forgetting to import math: Remember, while min(), max(), and round() are built-in, you need to
import the math library to use math.pi, math.floor(), math.ceil(), and math.sqrt().

2. Integer division: Be careful when dividing integers. For example, 4/3 * math.pi * r**3might not
give the result you expect, but 4/3 * math.pi * r**3 will.

3. Rounding errors: Remember that some calculations may introduce small rounding errors due to
how computers represent decimal numbers.

4. Using math operations on non-numbers: Make sure you’re only using these operations on numbers.
For example, min("apple", "banana") will give you the alphabetically first string, not an error,
which might not be what you expect.

Remember, young wizards, mathematics is the language of the universe, and with these Python spells, you
now have a powerful translator at your fingertips. Keep practicing, keep calculating, and may your code
always compute true!

93

17 The Magic of Merlin: Built-in Math Operations and the Math Library

94

18 The Round Table: Basic Sorting in Python

Today, we gather at the Round Table to learn the art of sorting. Just as King Arthur’s knights had their
proper places around the table, we’ll learn how to arrange elements in Python lists in a specific order. We’ll
master three powerful sorting techniques: sorted(), .sort(), and reverse sorting.

18.1 1. The sorted() Function: Creating a New Sorted List

The sorted() function is like a magical spell that creates a new, sorted version of a list without changing
the original. It’s perfect when you want to keep your original list intact.

Original list of knights

knights = ["Lancelot", "Galahad", "Parzival", "Gawain", "Bors"]

Create a new sorted list

sorted_knights = sorted(knights)

print("Original knights:", knights)

print("Sorted knights:", sorted_knights)

This will output:

Original knights: ['Lancelot', 'Galahad', 'Parzival', 'Gawain', 'Bors']

Sorted knights: ['Bors', 'Galahad', 'Gawain', 'Lancelot', 'Parzival']

Notice how the original knights list remains unchanged, while sorted_knights is a new, alphabetically
sorted list.

18.2 2. The .sort()Method: Sorting a List in Place

The .sort() method is like rearranging the actual seats at the Round Table. It modifies the original list
directly, which can be more memory-efficient but changes your original data.

95

18 The Round Table: Basic Sorting in Python

List of quest items

quest_items = ["Holy Grail", "Excalibur", "Round Table", "Magic Scabbard"]

Sort the list in place

quest_items.sort()

print("Sorted quest items:", quest_items)

This will output:

Sorted quest items: ['Excalibur', 'Holy Grail', 'Magic Scabbard', 'Round Table']

The quest_items list is now sorted alphabetically, and the original order is lost.

18.3 3. Reverse Sorting: From Z to A

Sometimes, you might want to sort in reverse order, like listing the knights from Z to A. Both sorted()

and .sort() can do this with the reverse parameter.

Using sorted():

List of magical creatures

creatures = ["Dragon", "Unicorn", "Griffin", "Phoenix", "Merlin"]

Create a new reverse-sorted list

reverse_sorted_creatures = sorted(creatures, reverse=True)

print("Original creatures:", creatures)

print("Reverse sorted creatures:", reverse_sorted_creatures)

This will output:

Original creatures: ['Dragon', 'Unicorn', 'Griffin', 'Phoenix', 'Merlin']

Reverse sorted creatures: ['Unicorn', 'Phoenix', 'Merlin', 'Griffin', 'Dragon']

Using .sort():

List of quest difficulties

difficulties = ["Easy", "Medium", "Hard", "Legendary"]

Sort the list in place in reverse order

difficulties.sort(reverse=True)

print("Sorted difficulties (hardest to easiest):", difficulties)

96

18.4 Sorting Numbers

This will output:

Sorted difficulties (hardest to easiest): ['Medium', 'Legendary', 'Hard', 'Easy']

18.4 Sorting Numbers

Sorting isn’t just for words! Let’s see how it works with numbers:

Knight power levels

power_levels = [5000, 9000, 1000, 7500, 500]

Sort power levels (lowest to highest)

sorted_powers = sorted(power_levels)

print("Sorted power levels:", sorted_powers)

Sort power levels in place (highest to lowest)

power_levels.sort(reverse=True)

print("Power levels from strongest to weakest:", power_levels)

This will output:

Sorted power levels: [500, 1000, 5000, 7500, 9000]

Power levels from strongest to weakest: [9000, 7500, 5000, 1000, 500]

18.5 Practice Your Sorting Magic

Now it’s your turn to practice the art of sorting:

1. Create a list of at least 5 Arthurian locations. Use sorted() to create a new, alphabetically sorted
list of these locations.

2. Make a list of the ages of at least 5 knights. Use the .sort() method to arrange these ages from
youngest to oldest.

3. Create a list of the years of famous battles. Use either sorted() or .sort() to arrange these years
from most recent to oldest (remember to use reverse sorting!).

Here’s a starting point for your quests:

97

18 The Round Table: Basic Sorting in Python

Quest 1: Sorting Arthurian Locations

locations = ["Camelot", "Avalon", "Tintagel", "Camlann", "Corbenic"]

Your code here

Quest 2: Sorting Knight Ages

knight_ages = [25, 40, 35, 30, 45]

Your code here

Quest 3: Sorting Battle Years

battle_years = [516, 490, 508, 520, 500]

Your code here

18.6 Common Bugs to Watch Out For

As you practice your sorting spells, be wary of these common pitfalls:

1. Forgetting that sorted() creates a new list: If you use sorted() but don’t assign the result to a new
variable, your original list won’t be affected.

2. Mistaking .sort() for sorted(): Remember, .sort() modifies the original list and returns None,
while sorted() creates a new list.

3. Sorting mixed data types: Be careful when sorting lists with mixed data types (like numbers and
strings together). This can lead to unexpected results or errors.

4. Forgetting the parentheses in .sort(): It’s .sort(), not .sort. Forgetting the parentheses will
reference the method without calling it.

Remember, young knights, the power to bring order to chaos is a noble and useful skill. With these sorting
techniques, you can arrange any list to your liking. Keep practicing, and soon you’ll be sorting with the
speed and precision of Merlin himself!

98

19 Decoding Ancient Texts: String Methods
(Part 1)

Today, we embark on a journey to unlock the secrets of ancient texts using powerful Python stringmethods.
Just as skilled translators can transform and interpret ancient scriptures, these string methods will allow
you to manipulate and modify text with ease. We’ll focus on three magical incantations: lower(), upper(),
and title().

19.1 1. The lower()Method: Transforming to Lowercase

The lower() method is like a humbling spell, turning all characters in a string to lowercase. This can be
useful for making case-insensitive comparisons or ensuring consistent formatting.

Ancient prophecy

prophecy = "THE CHOSEN ONE SHALL RISE"

Convert to lowercase

humble_prophecy = prophecy.lower()

print("Original prophecy:", prophecy)

print("Humble prophecy:", humble_prophecy)

This will output:

Original prophecy: THE CHOSEN ONE SHALL RISE

Humble prophecy: the chosen one shall rise

19.2 2. The upper()Method: Transforming to Uppercase

The upper()method is like a magnifying spell, turning all characters in a string to uppercase. This can be
useful for emphasizing text or creating headings.

99

19 Decoding Ancient Texts: String Methods (Part 1)

Whispered rumor

rumor = "the dragon sleeps beneath the mountain"

Convert to uppercase

loud_rumor = rumor.upper()

print("Original rumor:", rumor)

print("Loud rumor:", loud_rumor)

This will output:

Original rumor: the dragon sleeps beneath the mountain

Loud rumor: THE DRAGON SLEEPS BENEATH THE MOUNTAIN

19.3 3. The title()Method: Capitalizing Words

The title()method is like a regal transformation spell, capitalizing the first letter of each word in a string.
This is perfect for formatting titles or names.

Name of an ancient artifact

artifact = "sword of destiny"

Convert to title case

proper_name = artifact.title()

print("Original name:", artifact)

print("Proper name:", proper_name)

This will output:

Original name: sword of destiny

Proper name: Sword Of Destiny

19.4 Combining String Methods

These methods can be powerful on their own, but they become even more useful when combined with
other Python operations we’ve learned. Let’s see some examples:

100

19.5 Checking User Input Regardless of Case

19.5 Checking User Input Regardless of Case

secret_password = "OpenSesame"

user_input = input("Enter the secret password: ")

if user_input.lower() == secret_password.lower():

print("Access granted!")

else:

print("Access denied!")

This code will grant access regardless of how the user capitalizes their input, as long as the letters match.

19.6 Creating a Simple Text Formatter

user_text = input("Enter a line of text: ")

print("Original:", user_text)

print("Lowercase:", user_text.lower())

print("Uppercase:", user_text.upper())

print("Title Case:", user_text.title())

This program takes any input from the user and shows it formatted in different ways.

19.7 Practice Your String Magic

Now it’s your turn to practice these string transformation methods:

1. Create a variable with a mixed-case string (e.g., “ThE QuIcK BrOwN fOx”). Use the lower(), upper(),
and title() methods to transform this string and print the results.

2. Ask the user to enter their full name. Then, display their name in all uppercase, all lowercase, and
title case.

3. Create a simple “shouting machine” that takes any input from the user and repeats it back in all
uppercase, followed by three exclamation marks.

Here’s a starting point for your quests:

101

19 Decoding Ancient Texts: String Methods (Part 1)

Quest 1: Mixed-case transformation

mixed_case = "ThE QuIcK BrOwN fOx"

Your code here

Quest 2: Name formatter

Your code here

Quest 3: Shouting machine

Your code here

19.8 Common Bugs to Watch Out For

As you wield these string methods, be wary of these common pitfalls:

1. Forgetting that strings are immutable: These methods return new strings; they don’t modify the
original string. Make sure to assign the result to a variable if you want to use it later.

2. Misusing title(): Remember that title() capitalizes every word, which might not always be what
you want for proper nouns like “von” or “de” in names.

3. Chaining methods incorrectly: If you want to apply multiple methods, make sure you’re calling
them on the correct object. For example, "hello".upper().lower() will always result in lowercase
because lower() is applied last.

4. Assuming title() is perfect for names: While title() works well for most names, it might not
handle certain naming conventions correctly (e.g., “O'Brien” would become “O'Brien”).

The power to transform text is a valuable skill in the realm of programming. With these string methods,
you can manipulate text to fit any format or requirement. Keep practicing, and soon you’ll be decoding
and recoding text like the most skilled linguists of the digital age!

102

20 Decoding Ancient Texts: String Methods
(Part 2)

In our continued quest to unlock the secrets of ancient texts, we’ll explore two more powerful string
methods: strip() and split(). These magical incantations will allow you to clean up messy text and
break it down into manageable pieces.

20.1 1. The strip()Method: Trimming Whitespace

The strip() method is like a cleaning spell, removing extra whitespace (spaces, tabs, and newlines) from
the beginning and end of a string. This is incredibly useful when dealing with user input or processing
data from external sources.

A dusty old scroll with extra spaces

dusty_scroll = " Beware the dragon's lair "

Clean the scroll

clean_scroll = dusty_scroll.strip()

print("Dusty scroll:", dusty_scroll)

print("Clean scroll:", clean_scroll)

This will output:

Dusty scroll: ' Beware the dragon's lair '

Clean scroll: "Beware the dragon's lair"

The strip() method can also remove specific characters if you specify them:

A scroll sealed with X's

sealed_scroll = "XXXThe treasure is hiddenXXX"

Remove the seals

opened_scroll = sealed_scroll.strip("X")

print("Sealed scroll:", sealed_scroll)

print("Opened scroll:", opened_scroll)

103

20 Decoding Ancient Texts: String Methods (Part 2)

This will output:

Sealed scroll: XXXThe treasure is hiddenXXX

Opened scroll: The treasure is hidden

20.2 2. The split()Method: Breaking Strings Apart

The split()method is like a dissection spell, breaking a string into a list of substrings based on a specified
delimiter. By default, it splits on whitespace.

A prophecy with multiple parts

prophecy = "The chosen one will arrive when the moon is full"

Split the prophecy into words

prophecy_words = prophecy.split()

print("Original prophecy:", prophecy)

print("Prophecy words:", prophecy_words)

This will output:

Original prophecy: The chosen one will arrive when the moon is full

Prophecy words: ['The', 'chosen', 'one', 'will', 'arrive', 'when', 'the', 'moon', 'is', 'full']

You can also specify a different delimiter:

A list of magical ingredients

ingredients = "newt eyes,dragon scales,phoenix feather,unicorn hair"

Split the ingredients

ingredient_list = ingredients.split(",")

print("Original string:", ingredients)

print("List of ingredients:", ingredient_list)

This will output:

Original string: newt eyes,dragon scales,phoenix feather,unicorn hair

List of ingredients: ['newt eyes', 'dragon scales', 'phoenix feather', 'unicorn hair']

104

20.3 Combining strip() and split()

20.3 Combining strip() and split()

These methods become even more powerful when used together. Let’s see an example:

A messy spell with extra spaces

messy_spell = " fireball , ice shard , lightning bolt "

Clean up the spell and split it into components

clean_spell = messy_spell.strip()

spell_components = clean_spell.split(",")

Further clean each component

clean_components = [component.strip() for component in spell_components]

print("Original messy spell:", repr(messy_spell))

print("Clean spell components:", clean_components)

This will output:

Original messy spell: ' fireball , ice shard , lightning bolt '

Clean spell components: ['fireball', 'ice shard', 'lightning bolt']

20.4 Practice Your String Magic

Now it’s your turn to practice these string transformation methods:

1. Create a string with extra whitespace at the beginning and end. Use strip() to remove the extra
space and print the result.

2. Create a string representing a list of magical creatures, separated by commas. Use split() to turn
this into a actual Python list of creatures.

3. Ask the user to enter a sentence. Use a combination of strip() and split() to count how many
words are in the sentence (ignoring any leading or trailing spaces).

Here’s a starting point for your quests:

Quest 1: Stripping whitespace

spacey_string = " Merlin's beard! "

Your code here

Quest 2: Splitting a string

magical_creatures = "dragon,unicorn,griffin,phoenix,mermaid"

Your code here

105

20 Decoding Ancient Texts: String Methods (Part 2)

Quest 3: Word counter

Your code here

20.5 Common Bugs to Watch Out For

As you wield these string methods, be wary of these common pitfalls:

1. Forgetting that strings are immutable: Like other string methods, strip() and split() return new
strings or lists; they don’t modify the original string. Make sure to assign the result to a variable if
you want to use it later.

2. Misusing strip(): Remember that strip() only removes characters from the beginning and end of
a string, not from the middle.

3. Splitting on the wrong delimiter: If split() isn’t breaking your string as expected, double-check
that you’re using the correct delimiter.

4. Forgetting that split() returns a list: Even if you’re splitting a string into a single item, split()
will return a list. You might need to access the first element with [0] if you’re expecting a string.

Remember, the power to clean and parse text is crucial in the realm of programming. With strip() and
split(), you can prepare your textual data for further processing and analysis. Keep practicing, and soon
you’ll be decoding the most cryptic of texts with ease!

106

21 Decoding Ancient Texts: The Art of Error
Handling

In our previous lessons, we learned powerful string methods for manipulating text. But what happens
when our spells don’t work exactly as planned? Today, we’ll learn about error handling using Python’s
try and except statements. Just as a skilled scribe must know how to handle damaged or illegible texts, a
Python programmer must know how to handle potential errors gracefully.

21.1 What are Errors in Python?

When something goes wrong in our code, Python raises an error (also called an exception). Let’s see some
common errors that can occur when working with strings:

Trying to access a character beyond the string length

scroll = "Magic"

print("Attempting to access the 10th character...")

last_letter = scroll[10] # This raises an IndexError

If you run this code, Python will stop your program and show:

IndexError: string index out of range

Similarly, when converting strings to numbers:

Trying to convert non-numeric text to a number

treasure_count = "many"

print("Attempting to convert 'many' to a number...")

number = int(treasure_count) # This raises a ValueError

Python will show:

ValueError: invalid literal for int() with base 10: 'many'

107

21 Decoding Ancient Texts: The Art of Error Handling

21.2 The Try/Except Structure

Instead of letting these errors crash our program, we can handle them gracefully using try and except.
Here’s the basic structure:

try:

Code that might raise an error

except:

Code to handle the error

Let’s make our previous examples better:

scroll = "Magic"

print("Attempting to access the 10th character...")

try:

last_letter = scroll[10]

print("The 10th letter is:", last_letter)

except:

print("The scroll text isn't long enough!")

print("The program continues running!")

This will output:

Attempting to access the 10th character...

The scroll text isn't long enough!

The program continues running!

21.3 Handling Specific Error Types

We can catch specific types of errors by naming them in the except statement. This is like having different
solutions for different problems:

Let's handle string-to-number conversion errors

treasure_count = "many"

print("\nAttempting to count treasures...")

try:

number = int(treasure_count)

print("You have", number, "treasures!")

except ValueError:

print("'many' is not a valid number of treasures!")

108

21.4 Multiple Except Blocks

print("\nLet's try with a real number...")

treasure_count = "5"

try:

number = int(treasure_count)

print("You have", number, "treasures!")

except ValueError:

print("That's not a valid number of treasures!")

This will output:

Attempting to count treasures...

'many' is not a valid number of treasures!

Let's try with a real number...

You have 5 treasures!

21.4 Multiple Except Blocks

Sometimes different things can go wrong. We can handle different types of errors differently:

ancient_text = "Merlin"

print("Let's try some risky text operations...")

try:

Try to convert "two" to a number (this will fail)

position = int("two")

This line won't run because of the previous error

letter = ancient_text[position]

print(f"The letter is: {letter}")

except ValueError:

print("'two' is not a valid position number!")

except IndexError:

print("That position is beyond the text length!")

21.5 Using Try/Except with String Methods

Let’s apply error handling to some of the string methods we learned earlier:

109

21 Decoding Ancient Texts: The Art of Error Handling

mysterious_text = None # Imagine this came from somewhere else

print("\nTrying to clean up mysterious text...")

try:

cleaned_text = mysterious_text.strip()

uppercase_text = cleaned_text.upper()

print(f"The text says: {uppercase_text}")

except AttributeError:

print("Cannot read the mysterious text!")

print("\nLet's try with actual text...")

mysterious_text = " ancient secrets "

try:

cleaned_text = mysterious_text.strip()

uppercase_text = cleaned_text.upper()

print(f"The text says: {uppercase_text}")

except AttributeError:

print("Cannot read the mysterious text!")

21.6 Practice Time: Error Handling Quests

Now it’s your turn to practice error handling. Try these challenges:

1. Create code that tries to convert “one hundred” to a number and handles the error:

magic_number = "one hundred"

try:

result = int(magic_number)

print(f"The number is: {result}")

except ValueError:

print("That's not a proper number!")

2. Write code that tries to access different positions in a string:

magic_word = "Abracadabra"

print("\nTrying position 15...")

try:

letter = magic_word[15]

print(f"The letter is: {letter}")

except IndexError:

print("That position doesn't exist in the word!")

print("\nTrying position 0...")

try:

110

21.7 Common Bugs to Watch Out For

letter = magic_word[0]

print(f"The letter is: {letter}")

except IndexError:

print("That position doesn't exist in the word!")

3. Try using string methods on different types of values:

text = None

print("\nTrying to use string methods...")

try:

clean_text = text.strip()

print(f"Cleaned text: {clean_text}")

except AttributeError:

print("Cannot use string methods on this value!")

21.7 Common Bugs to Watch Out For

As you practice error handling, be wary of these common pitfalls:

1. Catching all errors: Using bare except: without specifying an error type can hide bugs. It’s better
to catch specific errors.

2. Order of except blocks: When catching multiple error types, remember that Python checks them
in order. Put more specific error types before more general ones.

3. Hiding important errors: Not all errors should be caught. Sometimes it’s better to let the program
show the error than to hide serious problems.

4. Missing the error message: When an error occurs, Python tries to tell you what went wrong. Pay
attention to these messages!

21.8 Conclusion and Further Resources

Congratulations! You’ve learned how to handle errors gracefully in your code. This skill will help you
write programs that can deal with unexpected situations without crashing.

To learn more about error handling in Python, check out these resources:

1. Python’s official documentation on Errors and Exceptions
2. Real Python’s Python Exceptions Guide
3. W3Schools Python Try Except

Remember, handling errors well is just as important as writing the code in the first place. Keep practicing
these techniques, and your programs will become more reliable and user-friendly!

111

https://docs.python.org/3/tutorial/errors.html
https://realpython.com/python-exceptions/
https://www.w3schools.com/python/python_try_except.asp

21 Decoding Ancient Texts: The Art of Error Handling

112

22 The Try/Except Structure: Catching Errors

Instead of letting these errors crash our program, we can handle them gracefully using try and except.
Think of it like having a safety net for your code. Here’s the basic structure:

try:

Code that might raise an error

except:

Code to handle the error

Let’s make our previous examples better:

scroll = "Magic"

print("Attempting to access the 11th character...")

try:

last_letter = scroll[11]

print("The 10th letter is:", last_letter)

except:

print("The scroll text isn't long enough!")

print("The program continues running!")

This will output:

Attempting to access the 11th character...

The scroll text isn't long enough!

The program continues running!

22.1 The ‘as’ Keyword: Capturing Error Messages

When catching errors, the as keyword lets us capture the actual error message. Think of it like catching a
message in a bottle - the as keyword lets us read what’s inside:

113

22 The Try/Except Structure: Catching Errors

Without using 'as'

try:

magic_number = int("not a number")

except ValueError:

print("There was an error") # Generic message

Using 'as' to get the specific error message

try:

magic_number = int("not a number")

except ValueError as error:

print(f"Specific error: {error}") # Shows the actual error message

You can use different names after as:

try:

number = int("abc")

except ValueError as problem:

print(f"Problem occurred: {problem}")

22.2 The Raise Statement: Creating Our Own Errors

Sometimes we want to create our own errors when certain conditions aren’t met. The raise statement
lets us do this. Think of it like raising a red flag to signal that something is wrong:

scroll_text = "Dragons " * 30 # A very long text

try:

if len(scroll_text) > 100:

raise ValueError("Scroll is too long to be read safely!")

print(f"The scroll says: {scroll_text}")

except ValueError as error:

print(f"Error: {error}")

This will output:

Error: Scroll is too long to be read safely!

22.3 Common Exception Types

Python has several built-in exception types we can use:

114

22.4 Practice Time: Error Handling Quests

1. ValueError: When a value is the right type but wrong value
2. TypeError: When an operation is performed on an incompatible type
3. IndexError: When trying to access a non-existent index
4. RuntimeError: When an error doesn’t fit into any other category

Let’s see them in action:

ValueError example

ingredients = []

try:

if len(ingredients) < 2:

raise ValueError("At least two ingredients are needed!")

print("Ready to brew potion!")

except ValueError as error:

print(f"Error: {error}")

TypeError example

spell_power = "maximum"

try:

if not isinstance(spell_power, int):

raise TypeError("Spell power must be a number!")

print("Valid spell power!")

except TypeError as error:

print(f"Error: {error}")

22.4 Practice Time: Error Handling Quests

Now it’s your turn to practice error handling. Try these challenges:

1. Create code that tries to convert “one hundred” to a number and handles the error:

magic_number = "one hundred"

try:

result = int(magic_number)

print(f"The number is: {result}")

except ValueError as error:

print(f"Error: That's not a proper number!")

print(f"Actual error message: {error}")

2. Write code that raises an error if a magic spell is too short:

115

22 The Try/Except Structure: Catching Errors

spell_name = "x"

try:

if len(spell_name) < 2:

raise ValueError("Spell name must be at least 2 letters long!")

print(f"Casting spell: {spell_name}")

except ValueError as error:

print(f"Error: {error}")

22.5 Common Bugs to Watch Out For

As you practice error handling, be wary of these common pitfalls:

1. Catching all errors: Using bare except: without specifying an error type can hide bugs. It’s better
to catch specific errors.

2. Unclear errormessages: When raising exceptions, make your error messages descriptive and helpful.

3. Missing the ‘as’ variable: If you use as to capture an error, make sure to use the error variable in
your except block.

4. Raising the wrong exception type: Use the most appropriate exception type for the situation.

22.6 Conclusion and Further Resources

Congratulations! You’ve now learned how to handle errors gracefully in Python. You can:

• Catch errors with try/except
• Capture error messages with as

• Create your own errors with raise

These skills will help you write programs that can deal with unexpected situations without crashing.

To learn more about error handling in Python, check out these resources:

1. Python’s official documentation on Errors and Exceptions
2. Real Python’s Python Exceptions Guide
3. W3Schools Python Try Except

Remember, handling errors well is just as important as writing the code in the first place. Keep practicing
these techniques, and your programs will become more reliable and user-friendly!

116

https://docs.python.org/3/tutorial/errors.html
https://realpython.com/python-exceptions/
https://www.w3schools.com/python/python_try_except.asp

23 For Loops: Parzival’s Repetitive Quests

Today, we embark on a new adventure to master one of the most powerful spells in the Python realm: the
for loop. Just as Parzival faced many trials in his quest for the Holy Grail, we often need to perform the
same action multiple times in our code. The for loop is our magical key to efficiently conquering these
repetitive tasks.

23.1 What is a For Loop?

Imagine Parzival needs to knock on the doors of 100 castles to find the Holy Grail. Writing the “knock
on door” code 100 times would be tedious and inefficient. That’s where the for loop comes in handy. It
allows us to repeat a set of instructions a specific number of times or for each item in a collection.

Here’s the basic structure of a for loop:

for item in sequence:

Code to be repeated

Let’s break this down:

• for is the keyword that starts the loop
• item is a variable that takes on the value of each element in the sequence
• sequence is the collection of items we’re looping through
• The indented code block after the colon : is what gets repeated

23.2 Your First For Loop: Knocking on Castle Doors

Let’s write a simple for loop to help Parzival knock on castle doors:

for castle_number in range(1, 6):

print(f"Parzival knocks on castle number {castle_number}")

print("Parzival finished knocking!")

When you run this code, you’ll see:

117

23 For Loops: Parzival’s Repetitive Quests

Parzival knocks on castle number 1

Parzival knocks on castle number 2

Parzival knocks on castle number 3

Parzival knocks on castle number 4

Parzival knocks on castle number 5

Parzival finished knocking!

Here, range(1, 6) creates a sequence of numbers from 1 to 5 (remember, the end number is not included).
The loop runs once for each number, with castle_number taking on each value in turn.

23.3 Looping Through Lists

We can also use for loops to iterate through lists. Let’s say Parzival has a list of magical items:

magical_items = ["Excalibur", "Holy Grail", "Magic Shield", "Enchanted Armor", "Wizard's Staff"]

for item in magical_items:

print(f"Parzival wields the {item} with great power!")

print("All magical items have been used!")

This will output:

Parzival wields the Excalibur with great power!

Parzival wields the Holy Grail with great power!

Parzival wields the Magic Shield with great power!

Parzival wields the Enchanted Armor with great power!

Parzival wields the Wizard's Staff with great power!

All magical items have been used!

23.4 The Range Function: Parzival’s Training Regimen

The range() function is a powerful tool when working with for loops. It can take up to three arguments:

• range(stop): Generates numbers from 0 to stop -1
• range(start, stop): Generates numbers from start to stop -1
• range(start, stop, step): Generates numbers from start to stop -1, incrementing by step

Let’s see how Parzival might use this in his training:

118

23.5 The Power of Accumulation: Counting Parzival’s Treasure

Parzival's warm-up: 5 jumping jacks

print("Warm-up:")

for i in range(5):

print(f"Jumping jack #{i+1}")

print("\nStrength training:")

Parzival's strength training: lift weights from 10 to 50 pounds, increasing by 10

for weight in range(10, 51, 10):

print(f"Lifting {weight} pounds")

print("\nCool-down:")

Parzival's cool-down: count backwards from 5 to 1

for count in range(5, 0, -1):

print(f"Cool-down stretch #{count}")

This will output:

Warm-up:

Jumping jack #1

Jumping jack #2

Jumping jack #3

Jumping jack #4

Jumping jack #5

Strength training:

Lifting 10 pounds

Lifting 20 pounds

Lifting 30 pounds

Lifting 40 pounds

Lifting 50 pounds

Cool-down:

Cool-down stretch #5

Cool-down stretch #4

Cool-down stretch #3

Cool-down stretch #2

Cool-down stretch #1

23.5 The Power of Accumulation: Counting Parzival’s Treasure

For loops are great for accumulating results. Let’s say Parzival is counting his treasure after a successful
quest:

119

23 For Loops: Parzival’s Repetitive Quests

treasure_chests = [50, 100, 75, 200, 25]

total_gold = 0

for gold in treasure_chests:

total_gold += gold

print(f"Parzival has accumulated {total_gold} gold coins on this quest!")

This will output:

Parzival has accumulated 450 gold coins on this quest!

23.6 Practice Time: Your For Loop Quests

Now it’s your turn to wield the power of for loops. Complete these quests to prove your mastery:

1. Create a list of 5 legendary weapons. Use a for loop to print a sentence about Parzival using each
weapon.

2. Use a for loop with range() to print the squares of numbers from 1 to 5.

3. Create a list of enemies Parzival must face. Use a for loop to print how many experience points he
gains from defeating each enemy (you decide the XP values).

4. Use a for loop to calculate the sum of all numbers from 1 to 100 (this is Parzival’s endurance test).

Here’s a starting point for your quests:

Quest 1: Legendary Weapons

legendary_weapons = ["Excalibur", "Mjolnir", "Gae Bolg", "Durandal", "Gungnir"]

Your code here

Quest 2: Square Numbers

Your code here

Quest 3: Defeating Enemies

enemies = ["Dragon", "Dark Knight", "Evil Wizard", "Goblin King", "Kraken"]

Your code here

Quest 4: Endurance Test

Your code here

120

23.7 Common Bugs to Watch Out For

23.7 Common Bugs to Watch Out For

As you practice your for loop skills, beware of these common pitfalls:

1. Forgetting the colon: Always remember to put a colon : at the end of your for line.

2. Incorrect indentation: The code block youwant to repeatmust be indented under the for statement.
Incorrect indentation can change the meaning of your code.

3. Off-by-one errors: Remember, range(1, 6) goes up to 5, not 6. If you need to include the last
number, use range(1, 7).

4. Modifying the loop variable: Avoid changing the loop variable (like i or item) within the loop. This
can lead to unexpected behavior.

5. Using break or continue incorrectly: These keywords can alter the flow of your loop. Make sure
you understand their effects before using them.

23.8 Conclusion and Further Resources

You’ve now learned the art of repetition with for loops. This powerful tool will allow you to efficiently
handle repeated tasks and iterate through collections of data, just as Parzival must repeat his training and
face multiple challenges in his quest.

To further enhance your for loop skills, check out these excellent resources:

1. Python’s official tutorial on for statements
2. Real Python’s Python “for” Loops (Definite Iteration)
3. W3Schools Python For Loops

Remember, mastering for loops is like honing your sword skills - it takes practice to become truly profi-
cient. Keep coding, keep iterating, and soon you’ll be tackling complex programming quests with ease!

121

https://docs.python.org/3/tutorial/controlflow.html#for-statements
https://realpython.com/python-for-loop/
https://www.w3schools.com/python/python_for_loops.asp

23 For Loops: Parzival’s Repetitive Quests

122

24 While Loops: Parzival’s Persistent Quests

In our last lesson, we mastered the for loop. Today, we embark on a new adventure to learn another
powerful looping construct: the while loop. Just as Parzival must persist in his quest until he finds the
Holy Grail, a while loop continues to execute as long as a certain condition is true.

24.1 What is a While Loop?

Imagine Parzival searching for the Holy Grail. He doesn’t know how many attempts it will take, but he
knows he must keep searching until he finds it. This is where a while loop comes in handy. It allows us to
repeat a set of instructions as long as a certain condition remains true.

Here’s the basic structure of a while loop:

while condition:

Code to be repeated

Let’s break this down:

• while is the keyword that starts the loop
• condition is an expression that evaluates to either True or False
• The indented code block after the colon : is what gets repeated as long as the condition is True

24.2 Your First While Loop: Parzival’s Grail Quest

Let’s write a simple while loop to simulate Parzival’s search for the Holy Grail:

import random

grail_found = False

days_searching = 0

while not grail_found:

days_searching += 1

if random.randint(1, 10) == 1: # 1 in 10 chance of finding the Grail each day

grail_found = True

123

24 While Loops: Parzival’s Persistent Quests

print(f"Huzzah! Parzival found the Holy Grail after {days_searching} days!")

This code will output something like:

Huzzah! Parzival found the Holy Grail after 7 days!

(The number of days will vary each time you run the code due to the random chance.)

In this example, the loop continues as long as grail_found is False. Each “day”, there’s a 1 in 10 chance of
finding the Grail. When the Grail is found, grail_found becomes True, and the loop ends.

24.3 While Loops with Counter Variables

Often, we use a counter variable to keep track of how many times a loop has run. Let’s see how Parzival
might use this in his training:

pushup_count = 0

while pushup_count < 10:

pushup_count += 1

print(f"Parzival does pushup #{pushup_count}")

print("Training complete! Time for a quest!")

This will output:

Parzival does pushup #1

Parzival does pushup #2

Parzival does pushup #3

Parzival does pushup #4

Parzival does pushup #5

Parzival does pushup #6

Parzival does pushup #7

Parzival does pushup #8

Parzival does pushup #9

Parzival does pushup #10

Training complete! Time for a quest!

124

24.4 The Power of User Input in While Loops

24.4 The Power of User Input in While Loops

While loops are great for creating interactive programs that continue until the user decides to stop. Let’s
create a simple game where Parzival guesses a number:

import random

secret_number = random.randint(1, 100)

guess = 0

attempts = 0

print("Parzival must guess the secret number between 1 and 100!")

while guess != secret_number:

guess = int(input("Enter your guess, Parzival: "))

attempts += 1

if guess < secret_number:

print("Too low! The number is higher.")

elif guess > secret_number:

print("Too high! The number is lower.")

print(f"Congratulations, Parzival! You found the secret number {secret_number} in {attempts} attempts!")

This game will continue until Parzival (the user) correctly guesses the secret number.

24.5 The ‘Break’ and ‘Continue’ Statements

Sometimes, we need more control over our loops. Python provides two special statements for this:

1. break: Immediately exits the loop
2. continue: Skips the rest of the current iteration and moves to the next one

Let’s see how Parzival might use these in his quest:

import random

dragon_power = 100

parzival_strength = 20

print("Parzival faces the mighty dragon!")

while dragon_power > 0:

125

24 While Loops: Parzival’s Persistent Quests

print(f"Dragon power: {dragon_power}, Parzival strength: {parzival_strength}")

if parzival_strength <= 0:

print("Parzival is too weak to continue. He must retreat!")

break

damage = random.randint(1, parzival_strength)

dragon_power -= damage

print(f"Parzival deals {damage} damage to the dragon!")

if dragon_power <= 50 and random.random() < 0.2: # 20% chance if dragon's below 1/2 health

print("The dragon flies away to recover. Parzival must wait for another day.")

break

parzival_strength -= 1

if dragon_power <= 0:

print("Parzival has slain the dragon! Victory!")

else:

print("The dragon lives to fight another day. Parzival will return stronger!")

This code simulates a battle between Parzival and a dragon, using break to end the battle if Parzival be-
comes too weak, and continue to simulate the dragon occasionally flying away.

24.6 Practice Time: Your While Loop Quests

Now it’s your turn to wield the power of while loops. Complete these quests to prove your mastery:

1. Create a while loop that simulates Parzival climbing a tower. He climbs 2-5 steps at a time (ran-
domly), and the tower is 50 steps high. Print his progress as he climbs.

2. Write a program that asks the user (Parzival) to guess a magic word. Use a while loop to keep asking
until they guess correctly.

3. Simulate a battle between Parzival and a series of enemies. Parzival starts with 100 health, and each
enemy does 10-20 damage. See how many enemies Parzival can defeat before his health reaches 0.

4. Create a simple text-based menu system for Parzival’s adventures. Use a while loop to keep showing
the menu until the user chooses to quit.

Here’s a starting point for your quests:

126

24.7 Common Bugs to Watch Out For

import random

Quest 1: Climbing the Tower

tower_height = 50

parzival_position = 0

Your code here

Quest 2: Guessing the Magic Word

magic_word = "Excalibur"

Your code here

Quest 3: Parzival's Battle

parzival_health = 100

enemies_defeated = 0

Your code here

Quest 4: Adventure Menu

Your code here

24.7 Common Bugs to Watch Out For

As you practice your while loop skills, beware of these common pitfalls:

1. Infinite loops: Make sure your condition will eventually become False, or use a break statement to
exit the loop.

2. Off-by-one errors: Be careful when using counters. Make sure your loop condition matches your
intention.

3. Forgetting to update the loop condition: If you’re using a variable in your condition, make sure it’s
updated inside the loop.

4. Incorrect indentation: Remember, everything that should repeat must be indented under the while
statement.

5. Using = instead of == in the condition: = is for assignment, == is for comparison.

24.8 Conclusion and Further Resources

You’ve now mastered the art of while loops. This powerful tool allows you to create flexible, responsive
code that can adapt to changing conditions, just as Parzival must adapt to the challenges he faces on his
quests.

To further enhance your while loop skills, check out these excellent resources:

127

24 While Loops: Parzival’s Persistent Quests

1. Python’s official tutorial on while statements
2. Real Python’s Python “while” Loops (Indefinite Iteration)
3. W3Schools Python While Loops

Remember, mastering while loops is like developing the persistence needed for a long quest - it takes prac-
tice and patience. Keep coding, keep iterating, and soon you’ll be creating complex, interactive programs
with ease!

128

https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming
https://realpython.com/python-while-loop/
https://www.w3schools.com/python/python_while_loops.asp

25 Nested Loops: Parzival’s Complex Quests

In our previous lessons, we mastered the for loop and the while loop. Today, we embark on an epic
adventure to combine these powerful tools: nested loops. Just as Parzival must navigate complex mazes
and multi-layered challenges in his quest for the Holy Grail, nested loops allow us to create more intricate
and sophisticated programs.

25.1 What are Nested Loops?

Nested loops are simply loops within loops. Imagine Parzival exploring a multi-level dungeon, where he
must search every room on every floor. The outer loop could represent the floors, while the inner loop
represents the rooms on each floor.

25.2 Nested For Loops: Exploring the Dungeon

Let’s start with a simple example of nested for loops. We’ll help Parzival explore a dungeon with 3 floors,
each containing 4 rooms:

for floor in range(1, 4): # 3 floors

print(f"Parzival enters floor {floor}")

for room in range(1, 5): # 4 rooms per floor

print(f" Searching room {room} on floor {floor}")

print(f"Parzival finishes exploring floor {floor}\n")

print("Dungeon fully explored!")

This will output:

Parzival enters floor 1

Searching room 1 on floor 1

Searching room 2 on floor 1

Searching room 3 on floor 1

Searching room 4 on floor 1

Parzival finishes exploring floor 1

129

25 Nested Loops: Parzival’s Complex Quests

Parzival enters floor 2

Searching room 1 on floor 2

Searching room 2 on floor 2

Searching room 3 on floor 2

Searching room 4 on floor 2

Parzival finishes exploring floor 2

Parzival enters floor 3

Searching room 1 on floor 3

Searching room 2 on floor 3

Searching room 3 on floor 3

Searching room 4 on floor 3

Parzival finishes exploring floor 3

Dungeon fully explored!

In this example, the outer loop iterates over the floors, while the inner loop iterates over the rooms on
each floor.

25.3 Nested While Loops: The Training Montage

Now, let’s use nested while loops to create a training montage for Parzival. He’ll train for a number of
days, and each day he’ll practice until he’s too tired to continue:

import random

days_of_training = 0

total_skills_improved = 0

while days_of_training < 7: # Train for a week

days_of_training += 1

print(f"\nDay {days_of_training} of training:")

energy = 100

daily_skills_improved = 0

while energy > 0:

skill_improvement = random.randint(1, 10)

energy_cost = random.randint(10, 25)

if energy >= energy_cost:

energy -= energy_cost

daily_skills_improved += skill_improvement

130

25.4 Combining For and While Loops: The Gauntlet Challenge

print(f" Parzival practiced and improved his skills by {skill_improvement} points. Energy left: {energy}")

else:

print(" Parzival is too tired to continue training today.")

break

total_skills_improved += daily_skills_improved

print(f"Skills improved today: {daily_skills_improved}")

print(f"\nTraining complete! Total skills improved over the week: {total_skills_improved}")

This script simulates a week of training, where each day Parzival practices until he runs out of energy. The
outer loop tracks the days, while the inner loop simulates the practice sessions each day.

25.4 Combining For and While Loops: The Gauntlet Challenge

Let’s create a more complex challenge for Parzival using a combination of for and while loops. He must
face a gauntlet of enemies on each floor of a tower:

import random

tower_floors = 5

parzival_health = 100

for floor in range(1, tower_floors + 1):

print(f"\nParzival enters floor {floor} of the tower.")

enemies_defeated = 0

while parzival_health > 0:

enemy_strength = random.randint(10, 20)

print(f" Parzival encounters an enemy with {enemy_strength} strength!")

if random.random() < 0.7: # 70% chance to defeat the enemy

print(" Parzival defeats the enemy!")

enemies_defeated += 1

if enemies_defeated == 3:

print(f"Parzival has cleared floor {floor}!")

break

else:

damage = random.randint(5, 15)

parzival_health -= damage

print(f" Parzival takes {damage} damage. Health remaining: {parzival_health}")

if parzival_health <= 0:

131

25 Nested Loops: Parzival’s Complex Quests

print("Parzival has fallen! The tower challenge is over.")

break

if parzival_health > 0:

print("\nCongratulations! Parzival has conquered the tower!")

else:

print(f"\nParzival made it to floor {floor} before falling.")

In this challenge, the for loop represents the floors of the tower, while the while loop simulates the battles
on each floor. Parzivalmust defeat three enemies to clear a floor, but if his health reaches zero, the challenge
ends.

25.5 Practice Time: Your Nested Loop Quests

Now it’s your turn to create complex challenges using nested loops. Complete these quests to prove your
mastery:

1. Create a nested loop structure that represents Parzival searching a 3x3 grid for the Holy Grail. Each
cell should have a random chance of containing the Grail.

2. Simulate a tournament where Parzival must win a best-of-3 match against 4 opponents. Use an
outer loop for the opponents and an inner loop for the individual matches.

3. Create a “potion brewing” game where Parzival must correctly guess the ingredients for 3 potions.
Use nested loops to allow multiple guesses for each potion.

4. Design a “dungeon crawler” where Parzival explores a 5x5 grid. Use nested loops to move through
the grid, and randomly place treasures and monsters in some cells.

Here’s a starting point for your quests:

import random

Quest 1: Searching for the Holy Grail

grid_size = 3

Your code here

Quest 2: Tournament Challenge

opponents = ["Sir Lancelot", "Merlin", "Morgan le Fay", "The Green Knight"]

Your code here

Quest 3: Potion Brewing Game

potions = ["Health", "Strength", "Invisibility"]

ingredients = ["Dragon scale", "Unicorn hair", "Phoenix feather", "Troll tooth", "Fairy dust"]

Your code here

132

25.6 Common Bugs to Watch Out For

Quest 4: Dungeon Crawler

dungeon_size = 5

Your code here

25.6 Common Bugs to Watch Out For

As you work with nested loops, be wary of these common pitfalls:

1. Infinite loops: Be extra careful with your loop conditions in nested structures. It’s easier to create
infinite loops when nesting.

2. Incorrect indentation: With nested loops, proper indentation is crucial. Make sure each loop and
its contents are correctly indented.

3. Confusion between loop variables: When nesting loops, make sure you use different variable names
for each loop to avoid confusion.

4. Unnecessary nesting: Sometimes, complex nested structures can be simplified. Always look for
ways to make your code more efficient and readable.

5. Off-by-one errors: Be especially careful with your loop ranges in nested structures. It’s easy to miss
the first or last iteration.

25.7 Conclusion and Further Resources

Congratulations, master code weavers! You’ve now unlocked the power of nested loops, allowing you to
create complex, multi-layered programs. Just as Parzival must navigate intricate challenges in his quests,
you can now craft sophisticated algorithms to solve complex problems.

To further enhance your nested loop skills, check out these excellent resources:

1. Python’s official documentation on compound statements
2. Real Python’s Python Nested Loops
3. GeeksforGeeks Python Nested Loops

Remember, mastering nested loops is like becoming a grandmaster chess player - it takes practice to see all
the moves and their consequences. Keep coding, keep experimenting, and soon you’ll be creating intricate
programs with the elegance of a true coding knight!

133

https://docs.python.org/3/reference/compound_stmts.html
https://realpython.com/python-for-loop/#nesting-for-loops
https://www.geeksforgeeks.org/nested-loops-in-python/

25 Nested Loops: Parzival’s Complex Quests

134

26 Advanced Debugging: Mastering the Art of
Code Divination

You’ve journeyed far in your quest for Pythonmastery, facing loops, conditionals, and the enigmatic realms
of variables and data types. Now, it’s time to hone your debugging skills to a razor’s edge. Today, we delve
deeper into the arcane art of debugging, unlocking powerful techniques to vanquish even the most elusive
bugs.

26.1 The VSCode Debugger: Your Crystal Ball

VSCode’s debugger is like a magical crystal ball, allowing you to peer into the very soul of your code as it
runs. Let’s learn how to harness its power:

1. Setting Breakpoints:

• Click in the left margin of your code to set a red dot (breakpoint).
• Your code will pause here during debugging, letting you inspect everything.

2. Starting the Debugger:

• Click the “Run and Debug” icon in the left sidebar (it looks like a bug with a play button).
• Select “Python File” to debug your current file.

3. Stepping Through Code:

• Use the control panel that appears to navigate your paused code:
– Step Over (F10): Move to the next line.
– Continue (F5): Run until the next breakpoint.

4. Inspecting Variables:

• The “Variables” pane shows the current state of all variables.
• Hover over variables in your code to see their current values.

26.2 Debugging in Action: Parzival’s Treasure Hunt

Let’s debug a treasure hunt simulator:

135

26 Advanced Debugging: Mastering the Art of Code Divination

import random

map_size = 5

treasure_x = random.randint(0, map_size - 1)

treasure_y = random.randint(0, map_size - 1)

attempts = 0

while True:

guess_x = int(input(f"Enter X coordinate (0-{map_size-1}): "))

guess_y = int(input(f"Enter Y coordinate (0-{map_size-1}): "))

attempts += 1

if guess_x == treasure_x and guess_y == treasure_y:

print(f"Huzzah! You found the treasure in {attempts} attempts!")

break

else:

print("Alas, no treasure here. Keep searching!")

To debug this:

1. Set a breakpoint on the treasure_x = random.randint(0, map_size - 1) line.
2. Start the debugger.
3. When it pauses, inspect the map_size variable.
4. Step through the code, watching how treasure_x and treasure_y are set.
5. Continue execution and provide input when prompted.
6. Use the debugger to watch how attempts increases and how the guesses are compared.

26.3 Advanced Techniques: Scrying the Code Streams

1. Conditional Breakpoints: Right-click on a breakpoint and add a condition. The code will only
pause when the condition is true. Example: Break when attempts > 10

2. Logpoints: Instead of pausing, logpoints print a message to the console. Example: Log “Treasure
not found” each time through the loop.

3. Watch Expressions: Add complex expressions to the Watch pane to evaluate them as you step
through code. Example: Watch abs(guess_x - treasure_x) + abs(guess_y - treasure_y) to
see how close the guess is.

26.4 Debugging Loops and Conditionals: Untangling the Threads of
Fate

Loops and conditionals can be tricky. Here are some tips:

136

26.5 Best Practices: The Code Mage’s Wisdom

1. Loop Debugging:

• Use a conditional breakpoint to pause on a specific iteration.
• Watch loop variables to ensure they’re changing as expected.

2. Conditional Debugging:

• Set breakpoints inside each branch of an if-statement.
• Use the debugger to understand how you reached a particular condition.

26.5 Best Practices: The Code Mage’s Wisdom

1. Use Descriptive Variable Names: player_health is clearer than ph.
2. Add Comments for Complex Logic: Future you will thank present you.
3. Use Print Statements Strategically: Sometimes a well-placed print can illuminate issues.

26.6 Practice: Debug These Enchanted Scripts

1. The Disappearing Dragon:

dragons = ["Red", "Blue", "Green", "Gold"]

for i in range(len(dragons)):

print(f"Defeating the {dragons[i]} dragon!")

del dragons[i]

print("All dragons defeated!")

2. The Cryptic Cauldron:

ingredients = ["newt eyes", "dragon scale", "phoenix feather", "unicorn hair"]

cauldron = []

for item in ingredients:

cauldron.append(item)

if len(cauldron) = 3:

print("Potion complete!")

break

print("Potion incomplete...")

print(f"Final potion: {cauldron}")

3. The Perplexing Palindrome:
word = "racecar"

is_palindrome = True

for i in range(len(word) // 2):

if word[i] != word[-i]:

is_palindrome = False

137

26 Advanced Debugging: Mastering the Art of Code Divination

if is_palindrome:

print(f"{word} is a palindrome!")

else:

print(f"{word} is not a palindrome.")

Use the VSCode debugger to find and fix the bugs in these scripts!

26.7 Common Debugging Pitfalls: Traps for the Unwary

1. Debugging the Wrong Version: Ensure you’re running the saved file.
2. Ignoring Warning Messages: They often hint at future errors.
3. Assuming, Not Verifying: Always check your assumptions with the debugger.
4. Debugging Too Much: Start with the first error; others might be consequences.

26.8 Conclusion and Further Enchantments

Congratulations, master debuggers! You’ve delved deep into the arcane arts of code divination. Remember,
debugging is not just about fixing errors—it’s about understanding your code on a deeper level.

To further enhance your debugging prowess, consult these sacred scrolls:

1. Official Python Debugging with VSCode
2. Real Python’s Guide to the Python Debugger
3. Python Debugging Techniques

May your code be ever bug-free, and your debugging skills ever sharp. Onward to greater coding adven-
tures!

138

https://code.visualstudio.com/docs/python/debugging
https://realpython.com/python-debugging-pdb/
https://towardsdatascience.com/python-debugging-techniques-for-data-scientists-7f3bb10fae64

27 Python Functions: Knightly Skills

Today, we embark on a new quest to master one of the most powerful tools in the Python realm: functions.
Just as a knight must learn various skills to become a true hero, a Python programmer must master func-
tions to create efficient and organized code. In this lesson, we’ll learn how to define and call functions,
your new allies in the world of programming.

27.1 What are Functions?

Imagine you’re a knight with a special move - let’s call it the “Dragon Slash.” Instead of describing every
step of this move each time you want to use it, you could simply say, “I use Dragon Slash!” That’s essentially
what a function does in programming. It’s a reusable block of code that performs a specific task.

27.2 Defining a Function: Crafting Your Special Move

To create a function in Python, we use the def keyword, followed by the function name and a pair of
parentheses. Here’s the basic structure:

def function_name():

Function body

Code to be executed

Let’s create our first function - the Dragon Slash:

def dragon_slash():

print("You swing your sword in a mighty arc!")

print("Fire erupts from the blade!")

print("The dragon recoils in fear!")

This defines the function, but doesn't run it yet

139

27 Python Functions: Knightly Skills

27.3 Calling a Function: Using Your Special Move

Now that we’ve defined our Dragon Slash, how do we use it? We call the function by writing its name
followed by parentheses:

print("A fearsome dragon appears!")

dragon_slash() # This calls (uses) the function

print("The dragon is weakened!")

When you run this code, you’ll see:

A fearsome dragon appears!

You swing your sword in a mighty arc!

Fire erupts from the blade!

The dragon recoils in fear!

The dragon is weakened!

27.4 The Power of Reusability

One of the main advantages of functions is that you can use them multiple times without rewriting the
code. Let’s see this in action:

def heal_party():

print("You raise your staff high!")

print("A warm light envelops your allies!")

print("Everyone feels refreshed!")

print("Your party encounters a group of goblins!")

dragon_slash()

print("The goblins counter-attack!")

heal_party()

print("A troll appears!")

dragon_slash()

heal_party()

This will output a whole adventure scene, reusing our functions multiple times!

27.5 Functions as Code Organizers

Functions also help us organize our code by grouping related tasks together. Let’s create a function that
represents a complete battle round:

140

27.6 Practice Time: Craft Your Own Functions

def battle_round():

print("You face your enemy!")

dragon_slash()

print("The enemy strikes back!")

heal_party()

print("Your party stands strong!")

print("A new challenger appears!")

battle_round()

print("Victory is near!")

battle_round()

By grouping these actions into a function, we’ve made our main program cleaner and easier to understand.
It’s like having a battle playbook - you don’t need to think about each step every time; you just call the
battle_round() function.

27.6 Practice Time: Craft Your Own Functions

Now it’s your turn to create some functions. Complete these quests to prove your mastery:

1. Create a function called cast_fireball() that prints out at least three lines describing casting a
fireball spell.

2. Make a function named sneak_attack() that describes a rogue’s sneak attack in at least three lines.

3. Define a function called summon_ally() that prints out the process of summoning a magical ally to
aid you in battle.

4. Create a hero_intro() function that introduces your hero with their name, class, and a catchphrase.

Here’s a starting point for your quest:

Quest 1: Fireball Spell

def cast_fireball():

Your code here

pass # Delete this 'pass' when you write your code

Quest 2: Sneak Attack

Define your sneak_attack() function here

Quest 3: Summon Ally

Define your summon_ally() function here

Quest 4: Hero Introduction

Define your hero_intro() function here

141

27 Python Functions: Knightly Skills

Don't forget to call your functions to test them!

cast_fireball()

Call your other functions here

27.7 Common Bugs to Watch Out For

As you craft your functions, beware of these common pitfalls:

1. Forgetting the colon: Always remember to put a colon : at the end of your function definition line.

2. Incorrect indentation: All the code inside a function must be indented. Incorrect indentation can
change the meaning of your code or cause errors.

3. Forgetting parentheses when calling: To call a function, you need parentheses, even if the func-
tion doesn’t take any arguments. Writing dragon_slash instead of dragon_slash() won’t call the
function.

4. Trying to call a function before it’s defined: Make sure you define your functions before you try to
use them in your code.

5. Naming conflicts: Avoid using names that are already used in Python (like print or input) for your
functions. This can lead to unexpected behavior.

27.8 Conclusion and Further Resources

You’ve now learned how to define and call functions, a crucial skill in your coding arsenal. With this power,
your programs can now be more organized, reusable, and easier to understand.

To further hone your function skills, check out these valuable resources:

1. Python Official Documentation on Functions
2. Real Python’s Python Functions Tutorial
3. Codecademy’s Learn Python 3 course (Functions are covered in the Functions section)

Remember, every great Python sorcerer started where you are now. Keep practicing your function-crafting
skills, and soon you’ll be weaving complex spells (programs) with ease. Onward to your next coding chal-
lenge!

142

https://docs.python.org/3/tutorial/controlflow.html#defining-functions
https://realpython.com/defining-your-own-python-function/
https://www.codecademy.com/learn/learn-python-3

28 Python Functions: The Power of Parameters

Welcome back, coding adventurers! In our last lesson, we learned how to create basic functions. Today,
we’re going to level up our function skills by introducing parameters. Parameters are likemagic ingredients
that make our functions more flexible and powerful.

28.1 What are Parameters?

Parameters are values that you can pass into a function. They allow a function to perform its task with
different inputs each time it’s called. Think of parameters as variables that belong to a function.

Let’s revisit our chef analogy. In our previous lesson, our chef (function) could only make one dish. But
what if we want our chef to make different dishes? That’s where parameters come in. They’re like the
ingredients we give to our chef to create various meals.

28.2 Creating Functions with Parameters

Here’s the basic structure of a function with parameters:

def function_name(parameter1, parameter2):

Function body

Code that uses parameter1 and parameter2

Let’s create a simple function that greets a person by name:

def greet(name):

print(f"Hello, {name}!")

Calling the function with different arguments

greet("Alice")

greet("Bob")

This will output:

Hello, Alice!

Hello, Bob!

143

28 Python Functions: The Power of Parameters

In this example, name is a parameter of the greet function. When we call the function, we provide an
argument (like “Alice” or “Bob”) which is assigned to the name parameter inside the function.

28.3 Multiple Parameters

Functions can have multiple parameters. Let’s create a function that calculates the area of a rectangle:

def calculate_area(length, width):

area = length * width

print(f"The area of the rectangle is {area} square units.")

calculate_area(5, 3)

calculate_area(10, 20)

This will output:

The area of the rectangle is 15 square units.

The area of the rectangle is 200 square units.

Here, length and width are both parameters. When calling the function, we need to provide values for
both parameters in the same order they’re defined in the function.

28.4 Default Parameters

Sometimes, you might want to have a default value for a parameter. This is useful when you want to make
a parameter optional. Here’s how you can do it:

def greet(name="friend"):

print(f"Hello, {name}!")

greet("Alice") # Using a provided argument

greet() # Using the default value

This will output:

Hello, Alice!

Hello, friend!

In this case, if no argument is provided for name, it will use the default value “friend”.

144

28.5 Keyword Arguments

28.5 Keyword Arguments

When calling a function with multiple parameters, you can use keyword arguments to specify which value
goes with which parameter:

def describe_pet(animal_type, pet_name):

print(f"I have a {animal_type} named {pet_name}.")

describe_pet(animal_type="hamster", pet_name="Bonnie")

describe_pet(pet_name="Clyde", animal_type="fish")

Both of these function calls will work correctly, even though the order of the arguments is different. This
can make your code more readable and less prone to errors.

28.6 Practice Time: Your Parameter Quests

Now it’s your turn to create some functions with parameters. Try these exercises:

1. Create a function called power_up(name, power) that prints a message saying what superpower a
person has. For example, power_up("Clark", "flight") should print “Clark now has the power of
flight!”

2. Make a function named calculate_total(price, tax_rate) that calculates the total price after tax.

3. Define a function called repeat_string(string, times) that prints a string a specified number of
times.

4. Create a function create_potion(ingredient1, ingredient2, ingredient3="magic water") that
prints a message about brewing a potion with the given ingredients. The third ingredient should
have a default value.

Here’s a starting point for your quests:

Quest 1: Superpower Assignment

def power_up(name, power):

Your code here

pass # Delete this 'pass' when you write your code

Quest 2: Price Calculator

Define your calculate_total() function here

Quest 3: String Repeater

def repeat_string(string, times):

Your code here

Hint: You can use the * operator to repeat strings

145

28 Python Functions: The Power of Parameters

pass # Delete this 'pass' when you write your code

Quest 4: Potion Brewing

Define your create_potion() function here

Test your functions

power_up("Diana", "super strength")

Test your other functions here

28.7 Common Bugs to Watch Out For

As you start working with function parameters, keep an eye out for these common issues:

1. Mismatched Arguments: Make sure the number of arguments matches the number of parameters
(unless you’re using default parameters).

2. Type Errors: Be careful about the types of arguments you pass. For example, if your function expects
a number, passing a string might cause an error.

3. Forgetting Default Values: If you’re using a function with default parameters, remember that you
can omit those arguments when calling the function.

4. Mutable Default Arguments: Be cautious when using mutable objects (like lists) as default argu-
ments. They can lead to unexpected behavior.

5. Positional Argument After Keyword Argument: In a function call, you can’t have a positional
argument after a keyword argument. For example, describe_pet(animal_type="cat", "Fluffy")

would cause an error.

28.8 Conclusion and Further Resources

You’ve now mastered the art of creating functions with parameters. These powerful tools allow your func-
tions to be much more flexible and reusable. In our next lesson, we’ll explore how functions can give back
values using return statements.

Remember, practice makes perfect. Keep experimenting with different types of parameters and function
calls. And don’t forget to have fun! After all, programming is all about solving puzzles and creating new
things. It’s like being a wizard, but instead of a wand, you have a keyboard. And instead of magic words,
you have function parameters. Abracadabra… I mean, print("Hello, World!")!

To deepen your understanding of function parameters, check out these resources:

1. Python’s official documentation on defining functions
2. Real Python’s guide to function arguments
3. W3Schools Python Function Arguments

146

https://docs.python.org/3/tutorial/controlflow.html#defining-functions
https://realpython.com/python-function-arguments/
https://www.w3schools.com/python/python_function_arguments.asp

28.8 Conclusion and Further Resources

Keep coding, and may your functions always run bug-free!

147

28 Python Functions: The Power of Parameters

148

29 Python Functions: Mastering Return Values

In our previous lessons, we learned how to create functions and make them flexible with parameters.
Today, we’re going to explore another crucial aspect of functions: return values. This concept will allow
our functions to not just perform actions, but also give back results that we can use in other parts of our
program.

29.1 What are Return Values?

Return values are the output of a function. When a function completes its task, it can send back a result
to the part of the program that called it. This allows us to use the result of a function’s operation in other
parts of our code.

Think of a function as a small factory. It takes in raw materials (parameters), processes them, and then
ships out a finished product (the return value). This finished product can then be used by other parts of
your program.

29.2 The return Statement

In Python, we use the return statement to specify the value that a function should output. Here’s the basic
structure:

def function_name(parameters):

Function body

Code that processes the parameters

return result

Let’s create a simple function that adds two numbers and returns the result:

def add_numbers(a, b):

result = a + b

return result

Using the function

sum = add_numbers(5, 3)

print(f"The sum is: {sum}")

149

29 Python Functions: Mastering Return Values

This will output:

The sum is: 8

In this example, add_numbers takes two parameters, adds them together, and returns the result. We then
store this returned value in the variable sum and print it.

29.3 Functions Without Return Values

Not all functions need to return a value. Functions that don’t have a return statement will return None by
default. These functions are typically used for their side effects (like printing to the console) rather than
for their output.

def greet(name):

print(f"Hello, {name}!")

result = greet("Alice")

print(f"The function returned: {result}")

This will output:

Hello, Alice!

The function returned: None

29.4 Returning Multiple Values

Python allows functions to return multiple values using tuples. This can be very useful when your function
needs to output more than one piece of information.

def get_name_and_age():

name = "Alice"

age = 30

return name, age

person_info = get_name_and_age()

print(f"Name: {person_info[0]}, Age: {person_info[1]}")

Alternatively, you can unpack the tuple directly:

name, age = get_name_and_age()

print(f"Name: {name}, Age: {age}")

150

29.5 Using Return Values in Conditional Statements

Both of these will output:

Name: Alice, Age: 30

29.5 Using Return Values in Conditional Statements

Return values are often used in conditional statements to control the flow of a program. Here’s an exam-
ple:

def is_even(number):

if number % 2 == 0:

return True

else:

return False

if is_even(4):

print("The number is even")

else:

print("The number is odd")

This will output:

The number is even

29.6 Practice Time: Your Return Value Quests

Now it’s your turn to create some functions with return values. Try these exercises:

1. Create a function called calculate_rectangle_area(length, width) that returns the area of a rect-
angle.

2. Make a function named get_circle_info(radius) that returns both the circumference and area of
a circle. (You can use 3.14 for π)

3. Define a function called is_palindrome(word) that returns True if the word is a palindrome (reads
the same forwards and backwards), and False otherwise.

4. Create a function create_full_name(first_name, last_name) that combines the first and last name
and returns the full name.

Here’s a starting point for your quests:

151

29 Python Functions: Mastering Return Values

import math # We'll use this for pi in the circle function

Quest 1: Rectangle Area

def calculate_rectangle_area(length, width):

Your code here

pass # Delete this 'pass' when you write your code

Quest 2: Circle Info

def get_circle_info(radius):

Your code here

Hint: Use math.pi for a more accurate value of pi

pass # Delete this 'pass' when you write your code

Quest 3: Palindrome Checker

def is_palindrome(word):

Your code here

Hint: You can use string slicing to reverse a string

pass # Delete this 'pass' when you write your code

Quest 4: Full Name Creator

Define your create_full_name() function here

Test your functions

print(calculate_rectangle_area(5, 3))

print(get_circle_info(5))

print(is_palindrome("racecar"))

print(is_palindrome("python"))

print(create_full_name("Ada", "Lovelace"))

29.7 Common Bugs to Watch Out For

As you start working with return values, keep an eye out for these common issues:

1. Forgetting to Return: If you forget to include a return statement, your function will return None by
default.

2. Unreachable Code: Any code after a return statement in a function will not be executed.

3. Returning the Wrong Type: Make sure the type of value you’re returning matches what the rest of
your program expects.

4. Ignoring Return Values: If a function returns a value, make sure you’re using it or storing it some-
where.

152

29.8 Conclusion and Further Resources

5. Confusing return and print: Remember, return sends a value back to the caller, while print just
displays output to the console.

29.8 Conclusion and Further Resources

You’ve now learned how to make your functions even more powerful by using return values. This allows
your functions to not just perform actions, but also produce results that can be used in other parts of your
program.

To further enhance your understanding of function return values, check out these resources:

1. Python’s official documentation on return statements
2. Real Python’s Python Return Statement Tutorial
3. W3Schools Python Function Return Values

Remember, the key to mastering these concepts is practice. Keep experimenting with different types of
return values and how you can use them in your programs. Happy coding!

153

https://docs.python.org/3/reference/simple_stmts.html#the-return-statement
https://realpython.com/python-return-statement/
https://www.w3schools.com/python/python_functions.asp#return

29 Python Functions: Mastering Return Values

154

30 Python Functions: Understanding Variable
Scope

We’ve covered creating functions, working with parameters, and utilizing return values. Today, we’ll
explore a crucial concept that ties everything together: variable scope. Understanding scope is essential
for writing clean, efficient, and bug-free code.

30.1 What is Variable Scope?

Scope refers to the visibility and accessibility of variables in different parts of your program. In other
words, it determines where you can use a particular variable in your code. Python has two main types of
scope:

1. Global scope: Variables defined outside of any function
2. Local scope: Variables defined inside a function

30.2 Local Scope

When you create a variable inside a function, it has a local scope. This means the variable can only be
accessed within that function.

def greet():

name = "Alice"

print(f"Hello, {name}!")

greet()

print(name) # This will raise a NameError

In this example, name is a local variable. It exists only inside the greet() function and cannot be accessed
outside of it.

155

30 Python Functions: Understanding Variable Scope

30.3 Global Scope

Variables defined outside of any function have a global scope. They can be accessed from anywhere in your
program, including inside functions.

message = "Welcome to Python!"

def greet():

print(message)

greet()

print(message)

Both of these print statements will successfully output “Welcome to Python!” because message is a global
variable.

30.4 The global Keyword

If you want to modify a global variable from within a function, you need to use the global keyword:

counter = 0

def increment():

global counter

counter += 1

print(f"Counter is now {counter}")

increment()

increment()

print(f"Final counter value: {counter}")

This will output:

Counter is now 1

Counter is now 2

Final counter value: 2

Without the global keyword, Pythonwould create a new local variable counter inside the function, leaving
the global counter unchanged.

156

30.5 Nested Functions and Nonlocal Variables

30.5 Nested Functions and Nonlocal Variables

Python also supports nested functions (functions inside functions). This introduces a new scope called
the enclosing scope. To modify variables from an outer (but non-global) scope, we use the nonlocal key-
word:

def outer():

x = "outer"

def inner():

nonlocal x

x = "inner"

print(f"Inner: {x}")

inner()

print(f"Outer: {x}")

outer()

This will output:

Inner: inner

Outer: inner

30.6 Best Practices for Using Scope

1. Prefer local variables: They make your functions more self-contained and easier to understand.
2. Limit global variables: Overuse of global variables can make your code harder to debug and main-

tain.
3. Use function parameters: Instead of relying on global variables, pass necessary data as parameters.
4. Return values: Use return values to get data out of functions rather than modifying global state.

30.7 Practice Time

Now it’s your turn to experiment with scope. Try these exercises:

1. Create a function that increments a global counter and returns its new value.

2. Write a function that takes a list as a parameter, modifies it, and doesn’t return anything. Then
show how the original list is changed.

3. Create a nested function where the inner function modifies a variable from the outer function.

157

30 Python Functions: Understanding Variable Scope

4. Write a function that tries to modify a global variable without using the global keyword. What
happens?

Here’s a starting point for exercise 1:

counter = 0

def increment_counter():

Your code here

pass

Test your function

print(increment_counter())

print(increment_counter())

print(f"Final counter value: {counter}")

30.8 Common Bugs to Watch Out For

As you work with variable scope, be aware of these common pitfalls:

1. Shadowing: When a local variable has the same name as a global variable, it “shadows” the global
variable within the function.

2. Forgetting global: Trying to modify a global variable without the global keyword will create a new
local variable instead.

3. Overusing global: Relying too heavily on global variables canmake your code harder to understand
and maintain.

4. Assuming global scope: Not all variables are global. Always check where a variable is defined.

5. Modifying mutable objects: Even without global, functions can modify mutable objects (like lists)
passed as arguments.

30.9 Conclusion and Further Resources

You now understand how to create functions, work with parameters, use return values, and manage vari-
able scope. These are fundamental concepts that will serve you well as you continue your Python jour-
ney.

Remember, mastering these concepts takes practice. Keepwriting functions, experimenting with different
scopes, and most importantly, enjoy the process of creating with code!

As you move forward, consider how you can use functions to make your code more modular, reusable, and
easier to understand. Functions are not just a tool for organizing code - they’re a way of thinking about
problems and solutions in programming.

158

30.9 Conclusion and Further Resources

To deepen your understanding of variable scope, check out these resources:

1. Python’s official documentation on scopes and namespaces
2. Real Python’s guide to Python Scope & the LEGB Rule
3. W3Schools Python Scope tutorial

Keep coding, keep learning, and keep pushing the boundaries of what you can create with Python!

159

https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces
https://realpython.com/python-scope-legb-rule/
https://www.w3schools.com/python/python_scope.asp

30 Python Functions: Understanding Variable Scope

160

31 The Grail’s Secrets: Creating and Accessing
Dictionaries

Today, we begin our exploration of one of Python’s most powerful data structures: dictionaries. Just as
ancient texts contain secrets paired with their meanings, Python dictionaries allow us to store information
in pairs of keys and values. Let’s unlock the mysteries of this magical tool!

31.1 What is a Dictionary?

A dictionary in Python is like a magical book where each spell (key) is paired with its effect (value). Unlike
lists, which use numbers to index their items (like inventory[0], inventory[1]), dictionaries use keys to look
up values. Think of it like a real dictionary, where you look up a word to find its definition.

31.2 Creating Your First Dictionary

To create a dictionary, we use curly braces {} and specify our key-value pairs with colons :. Let’s create a
simple inventory:

A simple inventory dictionary

inventory = {

"sword": "Steel Blade",

"shield": "Wooden Shield",

"potion": "Health Potion"

}

print(inventory)

This will output:

{'sword': 'Steel Blade', 'shield': 'Wooden Shield', 'potion': 'Health Potion'}

You can also create an empty dictionary and fill it later:

161

31 The Grail’s Secrets: Creating and Accessing Dictionaries

An empty dictionary

treasure_chest = {}

print(treasure_chest) # Output: {}

31.3 Accessing Values in a Dictionary

To access a value in a dictionary, we use its key inside square brackets []:

Getting values from our inventory

weapon = inventory["sword"]

print("My weapon:", weapon) # Output: My weapon: Steel Blade

defense = inventory["shield"]

print("My shield:", defense) # Output: My shield: Wooden Shield

healing = inventory["potion"]

print("My potion:", healing) # Output: My potion: Health Potion

31.4 Dictionary Keys and Values

Keys in a dictionary must be unique, but values can be repeated. Keys are typically strings, but they can
also be numbers or other immutable types. Values can be any type of data: strings, numbers, lists, or even
other dictionaries!

A player's stats with different types of values

player_stats = {

"name": "Parzival", # string value

"level": 10, # number value

"is_alive": True, # boolean value

"items": ["sword", "shield"] # list value

}

Accessing different types of values

print(player_stats["name"]) # Output: Parzival

print(player_stats["level"]) # Output: 10

print(player_stats["is_alive"]) # Output: True

print(player_stats["items"]) # Output: ['sword', 'shield']

162

31.5 Handling Missing Keys

31.5 Handling Missing Keys

If you try to access a key that doesn’t exist in the dictionary, Python will raise a KeyError:

try:

bow = inventory["bow"]

except KeyError:

print("You don't have a bow in your inventory!")

To avoid this error, we can use the .get() method, which allows us to specify a default value if the key
isn’t found:

Using get() to safely access dictionary values

bow = inventory.get("bow", "No bow found")

print(bow) # Output: No bow found

sword = inventory.get("sword", "No sword found")

print(sword) # Output: Steel Blade

31.6 Nested Dictionaries

Dictionaries can contain other dictionaries as values, creating a nested structure:

A game world with nested dictionaries

game_world = {

"town": {

"name": "Riverdale",

"shops": ["Blacksmith", "Potion Shop", "Inn"]

},

"dungeon": {

"name": "Dragon's Lair",

"difficulty": "Hard",

"boss": "Ancient Dragon"

}

}

Accessing nested values

print(game_world["town"]["name"]) # Output: Riverdale

print(game_world["dungeon"]["boss"]) # Output: Ancient Dragon

print(game_world["town"]["shops"][0]) # Output: Blacksmith

163

31 The Grail’s Secrets: Creating and Accessing Dictionaries

31.7 Practice Time: Your Dictionary Quests

Now it’s your turn to create and access dictionaries. Try these challenges:

1. Create a dictionary called character that stores information about a hero. Include their name, class
(like “Warrior” or “Mage”), level, and favorite weapon.

2. Create a nested dictionary called spellbook that contains at least three spells. For each spell, store
its power level and mana cost.

3. Try to access various values from your dictionaries and print them.

Here’s a starting point for your quests:

Quest 1: Create a character dictionary

character = {

"name": "Your Hero's Name",

Add more key-value pairs here

}

Quest 2: Create a spellbook dictionary

spellbook = {

"fireball": {

"power": 5,

"mana_cost": 10

},

Add more spells here

}

Quest 3: Access and print values

Try accessing and printing different values from your dictionaries

31.8 Common Bugs to Watch Out For

As you begin working with dictionaries, be wary of these common pitfalls:

1. Key Case Sensitivity: Dictionary keys are case-sensitive. inventory["Sword"] and inven-

tory["sword"] are different keys.

2. Forgetting Quotes: When using string keys, don’t forget to put them in quotes. inventory[sword]
won’t work, but inventory["sword"] will.

3. KeyError: Always make sure a key exists before trying to access it, or use .get() to provide a default
value.

164

31.9 Conclusion and Further Resources

4. Duplicate Keys: If you define a dictionary with duplicate keys, the last value will overwrite previous
ones.

5. Missing Commas: Don’t forget to separate key-value pairs with commas in your dictionary.

31.9 Conclusion and Further Resources

You’ve now learned the basics of creating and accessing Python dictionaries. This powerful data structure
will allow you to organize and store information in a more meaningful way than simple lists.

To further enhance your dictionary skills, check out these excellent resources:

1. Python’s official documentation on dictionaries
2. Real Python’s Python Dictionary Guide
3. W3Schools Python Dictionary Tutorial

Remember, mastering dictionaries is like learning to read an ancient tome of knowledge - it takes practice,
but the power it gives you is worth the effort. Keep experimenting with different ways to store and access
your data, and soon you’ll be wielding dictionaries like a true Python sage!

165

https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://realpython.com/python-dicts/
https://www.w3schools.com/python/python_dictionaries.asp

31 The Grail’s Secrets: Creating and Accessing Dictionaries

166

32 The Grail’s Secrets: Adding and Changing
Dictionary Items

In our previous lesson, we learned how to create dictionaries and access their values. Today, we’ll learn
how to modify our magical dictionaries by adding new items and changing existing ones. Just as a wizard’s
spellbook grows and evolves, our dictionaries can be updated with new information!

32.1 Adding New Items to a Dictionary

Adding a new item to a dictionary is simple - just assign a value to a new key. Let’s start with a basic
inventory and add items to it:

Start with a basic inventory

inventory = {

"sword": "Iron Sword",

"shield": "Wooden Shield"

}

print("Initial inventory:", inventory)

Add a new potion to the inventory

inventory["potion"] = "Health Potion"

print("After adding potion:", inventory)

Add some armor

inventory["armor"] = "Leather Armor"

print("After adding armor:", inventory)

This will output:

Initial inventory: {'sword': 'Iron Sword', 'shield': 'Wooden Shield'}

After adding potion: {'sword': 'Iron Sword', 'shield': 'Wooden Shield', 'potion': 'Health Potion'}

After adding armor: {'sword': 'Iron Sword', 'shield': 'Wooden Shield', 'potion': 'Health Potion', 'armor': 'Leather Armor'}

167

32 The Grail’s Secrets: Adding and Changing Dictionary Items

32.2 Changing Existing Items

To change the value of an existing key, we use the same syntax - the new value will replace the old one:

Let's upgrade our equipment

inventory["sword"] = "Steel Sword" # Upgrade from Iron Sword

print("After upgrading sword:", inventory)

inventory["shield"] = "Iron Shield" # Upgrade from Wooden Shield

print("After upgrading shield:", inventory)

Find a better potion

inventory["potion"] = "Super Health Potion" # Upgrade regular potion

print("After finding better potion:", inventory)

This will output:

After upgrading sword: {'sword': 'Steel Sword', 'shield': 'Wooden Shield', 'potion': 'Health Potion', 'armor': 'Leather Armor'}

After upgrading shield: {'sword': 'Steel Sword', 'shield': 'Iron Shield', 'potion': 'Health Potion', 'armor': 'Leather Armor'}

After finding better potion: {'sword': 'Steel Sword', 'shield': 'Iron Shield', 'potion': 'Super Health Potion', 'armor': 'Leather Armor'}

32.3 Modifying Numerical Values

When working with numbers in dictionaries, we can use operators like += to modify values:

Player stats with numerical values

player_stats = {

"health": 100,

"level": 1,

"gold": 50

}

print("Initial stats:", player_stats)

Player levels up!

player_stats["level"] += 1

player_stats["health"] += 25

player_stats["gold"] += 100

print("After leveling up:", player_stats)

This will output:

168

32.4 Adding and Modifying Items in Nested Dictionaries

Initial stats: {'health': 100, 'level': 1, 'gold': 50}

After leveling up: {'health': 125, 'level': 2, 'gold': 150}

32.4 Adding and Modifying Items in Nested Dictionaries

We can also add and modify items in nested dictionaries. Let’s manage a game world:

Start with a simple game world

game_world = {

"town": {

"name": "Riverdale",

"shops": ["Blacksmith"]

}

}

print("Initial world:", game_world)

Add a new location

game_world["forest"] = {

"name": "Mystic Woods",

"danger_level": "Medium",

"monsters": ["Wolf", "Bear"]

}

print("After adding forest:", game_world)

Add a new shop to the town

game_world["town"]["shops"].append("Magic Shop")

print("After adding shop:", game_world)

Add population to the town

game_world["town"]["population"] = 100

print("After adding population:", game_world)

32.5 Using Dictionary Methods to Add and Update Items

Dictionaries have some helpful methods for adding and updating items:

The .update() method can add multiple items at once

inventory = {"sword": "Iron Sword", "shield": "Wooden Shield"}

new_items = {"bow": "Long Bow", "arrows": "Steel Arrows"}

inventory.update(new_items)

169

32 The Grail’s Secrets: Adding and Changing Dictionary Items

print("After updating multiple items:", inventory)

The .setdefault() method adds an item only if the key doesn't exist

inventory.setdefault("sword", "Steel Sword") # Won't change existing sword

inventory.setdefault("armor", "Leather Armor") # Will add new armor

print("After using setdefault:", inventory)

32.6 Practice Time: Modify Your Dictionaries

Now it’s your turn to practice adding and changing dictionary items. Try these challenges:

1. Create a spellbook dictionary and add new spells to it. Then upgrade some of your spells to more
powerful versions.

2. Make a character dictionary and gradually improve their stats as they level up.

3. Create a town dictionary and add new buildings and features to it over time.

Here’s a starting point for your practice:

Challenge 1: Spellbook

spellbook = {}

Add spells and upgrade them

Challenge 2: Character Development

character = {"name": "Your Hero", "level": 1, "health": 100}

Improve your character's stats

Challenge 3: Town Building

town = {"name": "Your Town", "buildings": []}

Add new buildings and features

32.7 Common Bugs to Watch Out For

As you modify dictionaries, be wary of these common pitfalls:

1. Misspelled Keys: If you misspell a key when updating a value, you’ll create a new key-value pair
instead of updating the existing one.

2. Type Consistency: Make sure you maintain consistent value types for each key. Don’t accidentally
store a string where you previously had a number.

3. Nested Access: When working with nested dictionaries, make sure all the intermediate keys exist
before trying to modify deep values.

170

32.8 Conclusion and Further Resources

4. List vs. Dictionary: Remember that modifying lists inside dictionaries is different from modifying
dictionary values directly.

5. Case Sensitivity: Dictionary keys are case-sensitive, so be consistent with your capitalization.

32.8 Conclusion and Further Resources

You’ve now learned how to add new items to dictionaries and modify existing ones. These skills will allow
you to create dynamic, evolving data structures in your programs.

To further enhance your dictionary skills, check out these resources:

1. Python Dictionary Methods
2. Real Python’s Dictionaries in Python
3. W3Schools Python Dictionary Methods

Remember, like a wizard’s spellbook that grows more powerful with each new spell, your dictionaries can
evolve and change to meet your program’s needs. Keep practicing these techniques, and soon you’ll be a
master of Python’s dictionary magic!

171

https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://realpython.com/python-dicts/
https://www.w3schools.com/python/python_dictionaries_methods.asp

32 The Grail’s Secrets: Adding and Changing Dictionary Items

172

33 The Grail’s Secrets: Removing Items from
Dictionaries

In our previous lessons, we learned how to create dictionaries and add items to them. Today, we’ll learn
how to remove items from our dictionaries. Just as a knight must sometimes discard old equipment to
make room for new treasures, we must know how to remove items from our dictionaries.

33.1 The pop() Method: Removing and Returning Items

The pop()method removes an item and returns its value. This is useful when you want to remove an item
but still use its value:

Create a test inventory

inventory = {

"sword": "Steel Sword",

"shield": "Iron Shield",

"potion": "Health Potion"

}

print("Initial inventory:", inventory)

Remove and store the potion

removed_potion = inventory.pop("potion")

print("Removed item:", removed_potion)

print("Inventory after using potion:", inventory)

Try to remove a non-existent item

try:

bow = inventory.pop("bow")

except KeyError:

print("No bow found in inventory!")

This will output:

173

33 The Grail’s Secrets: Removing Items from Dictionaries

Initial inventory: {'sword': 'Steel Sword', 'shield': 'Iron Shield', 'potion': 'Health Potion'}

Removed item: Health Potion

Inventory after using potion: {'sword': 'Steel Sword', 'shield': 'Iron Shield'}

No bow found in inventory!

33.2 The del Statement: Direct Item Removal

Sometimes we just want to remove an item without keeping its value. The del statement is perfect for
this:

Starting inventory

inventory = {

"sword": "Steel Sword",

"shield": "Iron Shield",

"potion": "Health Potion"

}

print("Initial inventory:", inventory)

Remove the sword using del

del inventory["sword"]

print("After losing sword:", inventory)

Trying to delete a non-existent item

try:

del inventory["bow"]

except KeyError:

print("Can't delete bow - it doesn't exist!")

This will output:

Initial inventory: {'sword': 'Steel Sword', 'shield': 'Iron Shield', 'potion': 'Health Potion'}

After losing sword: {'shield': 'Iron Shield', 'potion': 'Health Potion'}

Can't delete bow - it doesn't exist!

33.3 The clear() Method: Removing All Items

To remove all items from a dictionary at once, use the clear() method:

174

33.4 Removing Items from Nested Dictionaries

Create a new inventory

inventory = {

"sword": "Steel Sword",

"shield": "Iron Shield",

"potion": "Health Potion"

}

print("Initial inventory:", inventory)

Clear the entire inventory

inventory.clear()

print("After clearing inventory:", inventory)

Add a new item to the empty inventory

inventory["dagger"] = "Bronze Dagger"

print("After finding new item:", inventory)

This will output:

Initial inventory: {'sword': 'Steel Sword', 'shield': 'Iron Shield', 'potion': 'Health Potion'}

After clearing inventory: {}

After finding new item: {'dagger': 'Bronze Dagger'}

33.4 Removing Items from Nested Dictionaries

When working with nested dictionaries, we need to be more careful about removing items:

Create a game world

game_world = {

"town": {

"name": "Riverdale",

"shops": ["Blacksmith", "Magic Shop", "Inn"]

},

"forest": {

"name": "Dark Forest",

"danger": "High"

}

}

print("Initial world:", game_world)

Remove the entire forest location

del game_world["forest"]

print("After removing forest:", game_world)

175

33 The Grail’s Secrets: Removing Items from Dictionaries

Remove a shop from the town

game_world["town"]["shops"].remove("Magic Shop")

print("After closing Magic Shop:", game_world)

33.5 Pop with Default Value

The pop() method can take a default value that will be returned if the key isn’t found:

inventory = {"sword": "Steel Sword", "shield": "Iron Shield"}

Pop with default value

bow = inventory.pop("bow", "No bow equipped")

print("Bow:", bow) # Output: No bow equipped

sword = inventory.pop("sword", "No sword equipped")

print("Sword:", sword) # Output: Steel Sword

print("Remaining inventory:", inventory)

33.6 Practice Time: Dictionary Removal Practice

Now it’s your turn to practice removing items from dictionaries. Try these challenges:

1. Create a dictionary of completed quests and remove them one by one as you “forget” them.

2. Make a spellbook dictionary and remove spells that are too weak to be useful anymore.

3. Create a town dictionary with multiple shops, then remove some shops that go out of business.

Here’s a starting point:

Challenge 1: Completed Quests

quests = {

"slay_dragon": "Defeated the dragon!",

"find_treasure": "Found the lost gold!",

"save_village": "Rescued the villagers!"

}

Remove quests one by one

Challenge 2: Spellbook Cleanup

spellbook = {

"firebolt": "Weak fire damage",

"fireball": "Strong fire damage",

176

33.7 Common Bugs to Watch Out For

"spark": "Tiny lightning damage",

"thunder": "Strong lightning damage"

}

Remove weak spells

Challenge 3: Town Management

town = {

"name": "Market Town",

"shops": ["Bakery", "Blacksmith", "Tailor", "Jeweler"]

}

Remove some shops

33.7 Common Bugs to Watch Out For

As you remove items from dictionaries, be wary of these common pitfalls:

1. KeyError: Always make sure a key exists before trying to remove it, or use pop() with a default
value.

2. Modifying While Iterating: Don’t remove items from a dictionary while looping through it.

3. Nested Structures: When removing items from nested dictionaries, make sure all the parent keys
exist.

4. Incorrect Method: Using remove() on a dictionary (it’s for lists) instead of pop() or del.

5. Missing References: After removing an item, make sure you’re not trying to use it later in your
code.

33.8 Conclusion and Further Resources

You’ve now learned three different ways to remove items from dictionaries: pop(), del, and clear(). Each
has its own use case, and knowing all three gives you flexibility in managing your dictionary data.

To learn more about dictionary operations, check out these resources:

1. Python Dictionary Methods
2. Real Python’s Dictionary Guide
3. W3Schools Python Dictionary Methods

Keep practicing these techniques, and remember: knowing when to remove items from your data struc-
tures is just as important as knowing when to add them. May your dictionaries always be well-maintained
and efficient!

177

https://docs.python.org/3/library/stdtypes.html#dict
https://realpython.com/python-dicts/
https://www.w3schools.com/python/python_dictionaries_methods.asp

33 The Grail’s Secrets: Removing Items from Dictionaries

178

34 The Grail’s Secrets: Dictionary Methods and
the ‘in’ Operator

In our final lesson on dictionaries, we’ll explore how to check if items exist in our dictionaries using the
‘in’ operator and discover some useful dictionary methods that will make working with dictionaries even
easier.

34.1 The ‘in’ Operator: Checking for Keys

The ‘in’ operator lets us check if a key exists in a dictionary:

Create an inventory

inventory = {

"sword": "Steel Sword",

"shield": "Iron Shield",

"potion": "Health Potion"

}

Check for items

print("Do we have a sword?", "sword" in inventory) # True

print("Do we have a bow?", "bow" in inventory) # False

print("Do we have a shield?", "shield" in inventory) # True

Use 'in' with if statements

if "potion" in inventory:

print("You have a potion ready!")

else:

print("Better find a potion soon...")

This makes it easy to avoid errors when accessing dictionary items:

Safely check and use items

item_to_check = "bow"

if item_to_check in inventory:

print(f"Using {inventory[item_to_check]}")

179

34 The Grail’s Secrets: Dictionary Methods and the ‘in’ Operator

else:

print(f"You don't have a {item_to_check}!")

34.2 Dictionary Methods: Getting Keys, Values, and Items

Dictionaries have several useful methods for accessing their contents:

34.3 The keys() Method: Getting All Keys

Show all items in inventory

inventory = {

"sword": "Steel Sword",

"shield": "Iron Shield",

"potion": "Health Potion"

}

Get all keys

item_names = inventory.keys()

print("Items in inventory:", list(item_names))

Loop through keys

print("\nChecking inventory:")

for item in inventory.keys():

print(f"Found: {item}")

34.4 The values() Method: Getting All Values

Get all values

item_descriptions = inventory.values()

print("Item descriptions:", list(item_descriptions))

Loop through values

print("\nInventory contains:")

for description in inventory.values():

print(f"- {description}")

180

34.5 The items() Method: Getting Key-Value Pairs

34.5 The items() Method: Getting Key-Value Pairs

Get all key-value pairs

print("\nFull inventory details:")

for item, description in inventory.items():

print(f"{item}: {description}")

34.6 The get() Method: Safe Dictionary Access

The get() method is a safe way to access dictionary values with a default fallback:

Create character stats

stats = {

"health": 100,

"magic": 50

}

Get values with defaults for missing stats

health = stats.get("health", 0) # Gets 100

magic = stats.get("magic", 0) # Gets 50

stamina = stats.get("stamina", 0) # Gets 0 (default)

print(f"Health: {health}")

print(f"Magic: {magic}")

print(f"Stamina: {stamina}")

34.7 The setdefault() Method: Setting Values Only if Key is Missing

Starting stats

stats = {"health": 100}

print("Initial stats:", stats)

Set defaults for missing stats

stats.setdefault("magic", 50) # Adds magic: 50

stats.setdefault("health", 200) # Won't change existing health

stats.setdefault("stamina", 75) # Adds stamina: 75

print("Stats after defaults:", stats)

181

34 The Grail’s Secrets: Dictionary Methods and the ‘in’ Operator

34.8 Practical Examples

Let’s see how these methods work together in some practical examples:

Checking required equipment

required_items = ["sword", "shield", "armor"]

inventory = {"sword": "Steel Sword", "shield": "Iron Shield"}

Find missing items

missing_items = []

for item in required_items:

if item not in inventory:

missing_items.append(item)

print("Missing items:", missing_items)

Create item quantities

quantities = {

"health_potion": 3,

"mana_potion": 2,

"antidote": 1

}

Check what items are low on stock

low_stock = []

for item, quantity in quantities.items():

if quantity < 2:

low_stock.append(item)

print("Low on:", low_stock)

34.9 Practice Time: Using Dictionary Methods

Now it’s your turn to practice using dictionary methods. Try these challenges:

1. Create a dictionary of items and their prices. Use a loop to print only items under 100 gold.

2. Make a spellbook dictionary and use the ‘in’ operator to check which spells you know.

3. Create a dictionary of quest statuses and use dictionary methods to find all completed quests.

Here’s a starting point:

182

34.10 Common Bugs to Watch Out For

Challenge 1: Item Prices

prices = {

"sword": 100,

"shield": 85,

"potion": 25,

"armor": 120

}

Print affordable items

Challenge 2: Spellbook

spellbook = {

"fireball": "Learned",

"heal": "Learned",

"lightning": "Unknown"

}

Check known spells

Challenge 3: Quest Status

quests = {

"slay_dragon": "Completed",

"find_treasure": "In Progress",

"save_village": "Completed"

}

Find all completed quests

34.10 Common Bugs to Watch Out For

As you use dictionary methods, be wary of these common pitfalls:

1. Converting Views to Lists: Methods like keys(), values(), and items() return view objects. If you
need a list, convert them using list().

2. Using ‘in’ for Values: The ‘in’ operator only checks keys. To check values, use in with values().

3. Modifying During Iteration: Be careful when modifying a dictionary while iterating over it.

4. Default Value Types: When using get() or setdefault(), make sure your default values match the
expected type.

5. Case Sensitivity: Remember that dictionary keys are case-sensitive when using ‘in’.

183

34 The Grail’s Secrets: Dictionary Methods and the ‘in’ Operator

34.11 Conclusion and Further Resources

You’ve nowmastered the essential dictionary methods and the ‘in’ operator. These tools will help you work
with dictionaries more effectively in your programs.

To learn more about dictionary methods, check out these resources:

1. Python Dictionary Methods Documentation
2. Real Python’s Dictionary Methods Guide
3. W3Schools Python Dictionary Methods

Remember, these methods are your tools for working efficiently with dictionaries. Practice using them,
and you’ll be manipulating dictionary data like a Python master!

184

https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://realpython.com/python-dicts/
https://www.w3schools.com/python/python_dictionaries_methods.asp

35 Why Do We Need Classes? A Tale of
Adventure and Code

Imagine you’re creating a game about Parzival’s quest for the Holy Grail. You need to keep track of many
characters, each with their own attributes like health, strength, and inventory. Let’s see how we might try
this without classes:

Create our hero

hero_name = "Parzival"

hero_health = 100

hero_strength = 15

hero_weapon = "Excalibur"

hero_inventory = ["health potion", "magic scroll", "shield"]

Create a companion

companion_name = "Galahad"

companion_health = 95

companion_strength = 14

companion_weapon = "Blessed Sword"

companion_inventory = ["healing herbs", "holy water"]

Create another companion

companion2_name = "Lancelot"

companion2_health = 98

companion2_strength = 16

companion2_weapon = "Arondight"

companion2_inventory = ["magic ring", "armor polish"]

This works, but it’s already getting messy. What if we need to add more characters? Or what if we want
to give a healing potion to Galahad? We’d need something like:

def heal_character(name, health, amount):

if name == "Parzival":

hero_health += amount

elif name == "Galahad":

companion_health += amount

elif name == "Lancelot":

185

35 Why Do We Need Classes? A Tale of Adventure and Code

companion2_health += amount

def attack_enemy(attacker_name, attacker_strength, attacker_weapon,

enemy_name, enemy_health):

This would be even messier!

pass

The problems are piling up:

1. We have to create new variables for every single attribute of every character
2. We have to remember which variables go with which character
3. Our functions need to handle each character separately
4. If we want to add a new attribute (like “magic power”), we need to add it everywhere
5. There’s no easy way to create new characters without copying and pasting code

This is where classes come to our rescue! With classes, we can create a template for what a character should
look like:

class Character:

def __init__(self, name, health, strength, weapon):

self.name = name

self.health = health

self.strength = strength

self.weapon = weapon

self.inventory = []

Now creating characters is easy!

parzival = Character("Parzival", 100, 15, "Excalibur")

galahad = Character("Galahad", 95, 14, "Blessed Sword")

lancelot = Character("Lancelot", 98, 16, "Arondight")

Think of a class like a cookie cutter - it defines the shape and structure of what we want to create. Each
character we create from this class is like a cookie made from that cutter. They all have the same basic
structure (name, health, strength, weapon), but each can have its own unique values.

Classes give us:

1. A way to keep all related data together (each character’s attributes stay with them)
2. A blueprint for creating new objects of the same type
3. A cleaner, more organized way to write our code
4. The ability to add new features to all characters by updating the class

Just as the knights of the Round Table shared certain characteristics (bravery, honor, combat skills) but
were each unique individuals, objects created from a class share a common structure but can have their
own unique values.

186

In the lessons that follow, we’ll learn how to create these magical blueprints called classes, and breathe life
into them by creating objects. We’ll discover how to give our objects abilities (methods), create different
types of objects that share characteristics (inheritance), and much more.

Get ready to level up your coding skills - it’s time to master the art of object-oriented programming!

187

35 Why Do We Need Classes? A Tale of Adventure and Code

188

36 Character Classes: Creating Your Own Types

Welcome, brave Python adventurers! Today we begin an exciting new chapter in our coding journey:
creating our own types using classes. Just as the world of role-playing games has different character classes
(like warriors, mages, and rogues), Python allows us to create our own custom types of objects with classes.
Let’s learn how to forge these powerful templates!

36.1 What is a Class?

Think of a class as a blueprint or template for creating objects. Just as all warriors in a game share cer-
tain characteristics (like strength and weapon skills), objects created from the same class share the same
structure and behaviors.

Let’s create our first class - a simple template for warriors:

class Warrior:

def __init__(self, name, health):

self.name = name

self.health = health

This code creates a new type called Warrior. The special __init__method (called the constructor) sets up
the initial attributes of each warrior we create.

36.2 Creating Objects from Classes

Once we have a class definition, we can create (or “instantiate”) objects from it:

Create two warrior objects

hero = Warrior("Parzival", 100)

companion = Warrior("Galahad", 95)

Access their attributes

print(f"{hero.name} has {hero.health} health")

print(f"{companion.name} has {companion.health} health")

This will output:

189

36 Character Classes: Creating Your Own Types

Parzival has 100 health

Galahad has 95 health

Each object we create from the Warrior class is called an instance, and each has its own set of attributes
(name and health in this case).

36.3 Adding More Attributes

We can make our warriors more interesting by giving them more attributes:

class Warrior:

def __init__(self, name, health, strength, weapon):

self.name = name

self.health = health

self.strength = strength

self.weapon = weapon

Create a more detailed warrior

hero = Warrior("Parzival", 100, 15, "Excalibur")

print(f"{hero.name} wields {hero.weapon}")

print(f"Stats: Health={hero.health}, Strength={hero.strength}")

This will output:

Parzival wields Excalibur

Stats: Health=100, Strength=15

36.4 The __init__Method and self

Let’s break down the special parts of our class:

1. The __init__ method is called automatically when we create a new warrior
2. self refers to the specific instance being created
3. self.name = name stores the name parameter as an attribute of the instance

Here’s another example with default values:

190

36.5 Creating Multiple Classes

class Mage:

def __init__(self, name, mana=100, spell="Magic Missile"):

self.name = name

self.mana = mana

self.spell = spell

Create mages with and without default values

merlin = Mage("Merlin") # Uses default mana and spell

gandalf = Mage("Gandalf", mana=150, spell="Fireball")

print(f"{merlin.name} knows {merlin.spell} and has {merlin.mana} mana")

print(f"{gandalf.name} knows {gandalf.spell} and has {gandalf.mana} mana")

This will output:

Merlin knows Magic Missile and has 100 mana

Gandalf knows Fireball and has 150 mana

36.5 Creating Multiple Classes

We can create different classes for different types of characters:

class Warrior:

def __init__(self, name, health=100, weapon="Sword"):

self.name = name

self.health = health

self.weapon = weapon

class Archer:

def __init__(self, name, arrows=20, bow_type="Longbow"):

self.name = name

self.arrows = arrows

self.bow_type = bow_type

Create different types of characters

knight = Warrior("Lancelot", weapon="Arondight")

ranger = Archer("Robin", arrows=30, bow_type="Elven Bow")

print(f"{knight.name} carries {knight.weapon}")

print(f"{ranger.name} has {ranger.arrows} arrows for their {ranger.bow_type}")

This will output:

191

36 Character Classes: Creating Your Own Types

Lancelot carries Arondight

Robin has 30 arrows for their Elven Bow

36.6 Practice Time: Create Your Classes

Now it’s your turn to create some classes! Try these challenges:

1. Create a Potion class that has attributes for name, healing_power, and cost.

2. Make a Spell class with attributes for name, mana_cost, and damage.

3. Design a Quest class that tracks a quest’s name, difficulty, and reward.

Here’s a starting point:

Challenge 1: Potion Class

class Potion:

def __init__(self, name, healing_power, cost):

Your code here

pass

Challenge 2: Spell Class

class Spell:

Your code here

pass

Challenge 3: Quest Class

class Quest:

Your code here

pass

Test your classes by creating some objects!

36.7 Common Bugs to Watch Out For

As you begin creating classes, be wary of these common pitfalls:

1. Forgetting self: Always include self as the first parameter in __init__ and other methods.

2. Name Conflicts: Don’t use the same name for a class attribute and a parameter:
class Wrong:

name = "Default" # Class attribute

def __init__(self, name): # Parameter shadows class attribute

name = name # Wrong! Should be self.name = name

192

36.8 Conclusion and Further Resources

3. Missing Parentheses: When creating objects, don’t forget the parentheses:
warrior = Warrior # Wrong! This assigns the class itself

warrior = Warrior() # Correct! This creates an instance

4. Case Sensitivity: Class names should start with a capital letter by convention:
class warrior: # Not recommended

class Warrior: # Recommended

5. Attribute Access: You can’t access instance attributes before they’re created:
class Warrior:

def __init__(self):

print(self.health) # Error! health doesn't exist yet

self.health = 100 # This creates the attribute

36.8 Conclusion and Further Resources

You’ve taken your first steps into the world of object-oriented programming with Python classes. You now
know how to create your own types, give them attributes, and create objects from them.

To learn more about Python classes, check out these excellent resources:

1. Python’s Official Classes Tutorial
2. Real Python’s OOP Guide
3. W3Schools Python Classes

Remember, classes are like magical forges where you create templates for the objects in your programs.
Keep practicing, and soon you’ll be crafting complex and powerful objects with ease. In our next lesson,
we’ll learn how to add behaviors to our objects using methods!

193

https://docs.python.org/3/tutorial/classes.html
https://realpython.com/python3-object-oriented-programming/
https://www.w3schools.com/python/python_classes.asp

36 Character Classes: Creating Your Own Types

194

37 Character Actions: Adding Behaviors with
Methods

In our last lesson, we learned how to create classes and give objects attributes. Today, we’ll learn how to
make our objects do things by adding methods. Just as a warrior needs both equipment (attributes) and
skills (methods), our objects need both data and behaviors to be truly useful.

37.1 What are Methods?

Methods are functions that belong to a class. They define what objects of that class can do. Let’s enhance
our Warrior class from last time by adding some actions:

class Warrior:

def __init__(self, name, health, strength):

self.name = name

self.health = health

self.strength = strength

def battle_cry(self):

print(f"{self.name} shouts: For glory and honor!")

Create a warrior and make them shout

hero = Warrior("Parzival", 100, 15)

hero.battle_cry()

This will output:

Parzival shouts: For glory and honor!

Notice how the method battle_cry can access the warrior’s name using self.name. The self parameter
refers to the specific warrior doing the shouting.

195

37 Character Actions: Adding Behaviors with Methods

37.2 Methods with Parameters

Methods can also take additional parameters, just like regular functions. Let’s add an attack method:

class Warrior:

def __init__(self, name, health, strength):

self.name = name

self.health = health

self.strength = strength

def battle_cry(self):

print(f"{self.name} shouts: For glory and honor!")

def attack(self, target):

print(f"{self.name} attacks {target} with {self.strength} strength!")

Create warriors and make them fight

hero = Warrior("Parzival", 100, 15)

dragon = "Ancient Dragon"

hero.attack(dragon)

This will output:

Parzival attacks Ancient Dragon with 15 strength!

37.3 Methods that Change Object State

Methods can modify the object’s attributes. Let’s add healing and damage methods:

class Warrior:

def __init__(self, name, health, strength):

self.name = name

self.health = health

self.strength = strength

def take_damage(self, amount):

self.health -= amount

print(f"{self.name} takes {amount} damage!")

print(f"{self.name}'s health: {self.health}")

def heal(self, amount):

self.health += amount

196

37.4 Methods that Return Values

print(f"{self.name} heals for {amount} health!")

print(f"{self.name}'s health: {self.health}")

Create a warrior and simulate combat

hero = Warrior("Parzival", 100, 15)

hero.take_damage(20)

hero.heal(10)

This will output:

Parzival takes 20 damage!

Parzival's health: 80

Parzival heals for 10 health!

Parzival's health: 90

37.4 Methods that Return Values

Just like regular functions, methods can return values:

class Warrior:

def __init__(self, name, health, strength):

self.name = name

self.health = health

self.strength = strength

def is_alive(self):

return self.health > 0

def get_attack_power(self):

return self.strength * 2

Check warrior status

hero = Warrior("Parzival", 100, 15)

if hero.is_alive():

print(f"{hero.name} can attack for {hero.get_attack_power()} damage!")

This will output:

Parzival can attack for 30 damage!

197

37 Character Actions: Adding Behaviors with Methods

37.5 A Complete Character Class

Let’s put it all together with a more complete character class:

class Character:

def __init__(self, name, health, strength):

self.name = name

self.health = health

self.strength = strength

self.level = 1

self.experience = 0

def battle_cry(self):

print(f"{self.name} shouts: For glory and honor!")

def take_damage(self, amount):

self.health -= amount

print(f"{self.name} takes {amount} damage!")

print(f"Health remaining: {self.health}")

def heal(self, amount):

self.health += amount

print(f"{self.name} heals for {amount} health!")

print(f"Health now: {self.health}")

def gain_experience(self, amount):

self.experience += amount

print(f"{self.name} gains {amount} experience!")

Level up if experience is high enough

if self.experience >= 100:

self.level_up()

def level_up(self):

self.level += 1

self.strength += 5

self.health += 20

self.experience = 0

print(f"{self.name} reaches level {self.level}!")

print(f"Strength increased to {self.strength}")

print(f"Health increased to {self.health}")

Create and use a character

hero = Character("Parzival", 100, 15)

198

37.6 Practice Time: Adding Methods to Your Classes

hero.battle_cry()

hero.take_damage(30)

hero.heal(20)

hero.gain_experience(120) # This will trigger a level up

37.6 Practice Time: Adding Methods to Your Classes

Now it’s your turn to create classes with methods! Try these challenges:

1. Create a Spell class with methods for casting the spell and checking if there’s enough mana:

class Spell:

def __init__(self, name, damage, mana_cost):

Your code here

pass

def cast(self, caster, target):

Your code here

pass

def has_enough_mana(self, caster_mana):

Your code here

pass

2. Make a Potion class with methods for using the potion and checking if it’s expired:

class Potion:

def __init__(self, name, healing_power, uses):

Your code here

pass

def use(self, target):

Your code here

pass

def is_useable(self):

Your code here

pass

3. Design a Quest class with methods for starting, completing, and failing the quest:

199

37 Character Actions: Adding Behaviors with Methods

class Quest:

def __init__(self, name, difficulty, reward):

Your code here

pass

def start(self):

Your code here

pass

def complete(self):

Your code here

pass

def fail(self):

Your code here

pass

37.7 Common Bugs to Watch Out For

As you work with methods, be wary of these common pitfalls:

1. Forgetting self: Always include self as the first parameter in method definitions:

def wrong_method(name): # Missing self!

print(name)

def correct_method(self, name):

print(name)

2. Not Using self to Access Attributes: Within methods, you must use self. to access object at-
tributes:

def wrong_method(self):

print(name) # NameError: name is not defined

def correct_method(self):

print(self.name) # Correctly accesses the object's name

3. Including selfWhen Calling Methods: When calling a method, don’t include self:

hero.battle_cry(self) # Wrong!

hero.battle_cry() # Correct!

4. Modifying Attributes Without self: When changing object attributes, remember to use self:

200

37.8 Conclusion and Further Resources

def wrong_heal(self, amount):

health += amount # Wrong! Creates a local variable

def correct_heal(self, amount):

self.health += amount # Correctly modifies the object's health

37.8 Conclusion and Further Resources

You’ve now learned how to add behaviors to your objects using methods. This makes your classes much
more powerful and useful. Just as a warrior needs both equipment and skills to be effective, objects need
both attributes and methods to be truly useful in your programs.

To learn more about Python methods and object-oriented programming, check out these resources:

1. Python’s Official Tutorial on Classes and Methods
2. Real Python’s Guide to Object-Oriented Programming
3. W3Schools Python Methods

In our next lesson, we’ll learn about inheritance - how to create new classes that build upon existing ones.
Until then, keep practicing with your objects and methods!

201

https://docs.python.org/3/tutorial/classes.html#method-objects
https://realpython.com/python3-object-oriented-programming/
https://www.w3schools.com/python/python_classes.asp

37 Character Actions: Adding Behaviors with Methods

202

38 Class Inheritance: Creating Character
Specializations

In our previous lessons, we learned how to create classes and add methods to them. Today, we’ll explore
inheritance - a powerful feature that lets us create new classes based on existing ones. Just as a Paladin is
a special type of Warrior who also has holy powers, we can create specialized classes that build upon more
basic ones.

38.1 What is Inheritance?

Inheritance allows us to create a new class that’s a special version of an existing class. The new class
(called the child or subclass) gets all the attributes and methods of the original class (called the parent or
superclass), and we can add new ones or modify existing ones.

Let’s start with a basic Character class and create specialized versions of it:

class Character:

def __init__(self, name, health, strength):

self.name = name

self.health = health

self.strength = strength

def attack(self, target):

print(f"{self.name} attacks {target} for {self.strength} damage!")

class Warrior(Character): # Warrior inherits from Character

def __init__(self, name, health, strength, weapon):

First, set up the basic character attributes

super().__init__(name, health, strength)

Then add warrior-specific attribute

self.weapon = weapon

def battle_cry(self):

print(f"{self.name} shouts: For glory!")

Create a warrior

203

38 Class Inheritance: Creating Character Specializations

hero = Warrior("Parzival", 100, 15, "Excalibur")

Use both Character and Warrior methods

hero.attack("Dragon") # From Character class

hero.battle_cry() # From Warrior class

This will output:

Parzival attacks Dragon for 15 damage!

Parzival shouts: For glory!

38.2 Creating Different Character Types

Let’s create several specialized character classes:

class Character:

def __init__(self, name, health, strength):

self.name = name

self.health = health

self.strength = strength

def attack(self, target):

print(f"{self.name} attacks {target} for {self.strength} damage!")

class Warrior(Character):

def __init__(self, name, health, strength, weapon):

super().__init__(name, health, strength)

self.weapon = weapon

def battle_cry(self):

print(f"{self.name} shouts: For glory!")

class Mage(Character):

def __init__(self, name, health, strength, mana):

super().__init__(name, health, strength)

self.mana = mana

def cast_spell(self, spell, target):

if self.mana >= 10:

print(f"{self.name} casts {spell} at {target}!")

self.mana -= 10

else:

204

38.3 Overriding Parent Methods

print(f"{self.name} is out of mana!")

class Archer(Character):

def __init__(self, name, health, strength, arrows):

super().__init__(name, health, strength)

self.arrows = arrows

def shoot(self, target):

if self.arrows > 0:

print(f"{self.name} shoots an arrow at {target}!")

self.arrows -= 1

else:

print(f"{self.name} is out of arrows!")

Create different character types

warrior = Warrior("Parzival", 100, 15, "Excalibur")

mage = Mage("Merlin", 80, 5, 100)

archer = Archer("Robin", 90, 10, 20)

Try out their abilities

warrior.attack("Dragon") # From Character class

warrior.battle_cry() # From Warrior class

mage.cast_spell("Fireball", "Dragon") # From Mage class

archer.shoot("Dragon") # From Archer class

38.3 Overriding Parent Methods

Sometimeswewant a child class to do something differently than its parent class. We can overridemethods
to do this:

class Character:

def __init__(self, name, health, strength):

self.name = name

self.health = health

self.strength = strength

def attack(self, target):

print(f"{self.name} attacks {target} for {self.strength} damage!")

class Warrior(Character):

def __init__(self, name, health, strength, weapon):

super().__init__(name, health, strength)

self.weapon = weapon

205

38 Class Inheritance: Creating Character Specializations

def attack(self, target): # Override the attack method

weapon_bonus = 5

total_damage = self.strength + weapon_bonus

print(f"{self.name} attacks {target} with {self.weapon}")

print(f"Dealing {total_damage} damage!")

Compare the different attacks

character = Character("Villager", 50, 5)

warrior = Warrior("Parzival", 100, 15, "Excalibur")

character.attack("Training Dummy")

warrior.attack("Training Dummy")

This will output:

Villager attacks Training Dummy for 5 damage!

Parzival attacks Training Dummy with Excalibur

Dealing 20 damage!

38.4 Using super() in Methods

The super() function lets us call methods from the parent class. This is useful when we want to extend,
rather than completely replace, a parent’s method:

class Character:

def __init__(self, name, health, strength):

self.name = name

self.health = health

self.strength = strength

def level_up(self):

self.health += 10

self.strength += 2

print(f"{self.name} reaches a new level!")

print(f"Health increased to {self.health}")

print(f"Strength increased to {self.strength}")

class Mage(Character):

def __init__(self, name, health, strength, mana):

super().__init__(name, health, strength)

self.mana = mana

206

38.5 Practice Time: Class Inheritance

def level_up(self):

First, do the normal level up stuff

super().level_up()

Then add mage-specific improvements

self.mana += 20

print(f"Mana increased to {self.mana}")

Create and level up a mage

merlin = Mage("Merlin", 80, 5, 100)

merlin.level_up()

38.5 Practice Time: Class Inheritance

Now it’s your turn to work with inheritance! Try these challenges:

1. Create a Weapon base class and several specialized weapon classes (Sword, Bow, Staff) that inherit
from it:

class Weapon:

def __init__(self, name, damage):

Your code here

pass

def attack(self):

Your code here

pass

class Sword(Weapon):

Your code here

pass

class Bow(Weapon):

Your code here

pass

2. Make a Spell base class and create different types of spells that inherit from it:

class Spell:

def __init__(self, name, mana_cost):

Your code here

pass

def cast(self, caster, target):

207

38 Class Inheritance: Creating Character Specializations

Your code here

pass

class FireSpell(Spell):

Your code here

pass

class IceSpell(Spell):

Your code here

pass

3. Create a Monster base class and several specific monster types:

class Monster:

def __init__(self, name, health, damage):

Your code here

pass

class Dragon(Monster):

Your code here

pass

class Troll(Monster):

Your code here

pass

38.6 Common Bugs to Watch Out For

As you work with inheritance, be wary of these common pitfalls:

1. Forgetting super().__init__(): Always call the parent’s __init__ method in your child class con-
structors.

class Wrong(Parent):

def __init__(self, name):

self.other = "Something" # Parent's __init__ never called!

class Right(Parent):

def __init__(self, name):

super().__init__(name) # Call parent first

self.other = "Something"

2. Method Resolution Order: Python looks for methods in the child class first, then the parent. Be
aware of this when overriding methods.

208

38.7 Conclusion and Further Resources

3. Accessing Parent Methods: Use super() to access parent methods, don’t try to call them directly
through the parent class name.

4. Multiple Inheritance Complexity: While Python supports inheriting frommultiple classes, it’s usu-
ally better to stick to single inheritance when learning.

5. Overriding Methods Incorrectly: When overriding methods, make sure the parameters match the
parent class method.

38.7 Conclusion and Further Resources

You’ve now learned about inheritance, one of the most powerful features of object-oriented programming.
With inheritance, you can create hierarchies of related classes, making your code more organized and
reusable.

To learn more about Python inheritance, check out these resources:

1. Python’s Official Tutorial on Inheritance
2. Real Python’s Guide to Inheritance in Python
3. W3Schools Python Inheritance

In our next lesson, we’ll explore some advanced class concepts including class methods, static methods,
and properties. Keep practicing with inheritance, and soon you’ll be creating complex class hierarchies
with ease!

209

https://docs.python.org/3/tutorial/classes.html#inheritance
https://realpython.com/inheritance-composition-python/
https://www.w3schools.com/python/python_inheritance.asp

38 Class Inheritance: Creating Character Specializations

210

39 Advanced Class Concepts: The Deeper
Mysteries

Welcome back, master programmers! In our final lesson on classes, we’ll explore some advanced concepts
that will give you even more power and flexibility in your object-oriented programming. Just as master
wizards have access to deeper magical knowledge, these advanced techniques will let you create more
sophisticated and elegant class designs.

39.1 Class Attributes vs Instance Attributes

So far, we’ve worked with instance attributes - attributes that belong to each individual object. But some-
times we want attributes that belong to the class itself. These are called class attributes:

class Warrior:

Class attributes - shared by all warriors

max_level = 100

base_health = 100

def __init__(self, name):

Instance attributes - unique to each warrior

self.name = name

self.level = 1

self.health = self.base_health

All warriors share the same class attributes

print(f"Maximum warrior level: {Warrior.max_level}")

print(f"Base warrior health: {Warrior.base_health}")

Create some warriors

hero1 = Warrior("Parzival")

hero2 = Warrior("Galahad")

Each warrior has their own instance attributes

print(f"{hero1.name} is level {hero1.level}")

print(f"{hero2.name} is level {hero2.level}")

211

39 Advanced Class Concepts: The Deeper Mysteries

This will output:

Maximum warrior level: 100

Base warrior health: 100

Parzival is level 1

Galahad is level 1

Class attributes are perfect for values that should be the same for all instances of a class:

class GameCharacter:

Class attributes for game balance

max_health = 1000

max_strength = 100

max_speed = 50

def __init__(self, name, health):

self.name = name

Use class attribute to limit health

self.health = min(health, self.max_health)

Create a character

hero = GameCharacter("Parzival", 1500) # Health will be capped at 1000

print(f"{hero.name}'s health: {hero.health}")

39.2 Class Methods

Class methods are methods that work with the class itself rather than instances. We create them using the
@classmethod decorator:

class Warrior:

_total_warriors = 0 # Class attribute to track number of warriors

def __init__(self, name):

self.name = name

Warrior._total_warriors += 1

@classmethod

def get_total_warriors(cls):

return cls._total_warriors

@classmethod

def create_knight(cls, name):

A class method that creates a special type of warrior

212

39.3 Static Methods

warrior = cls(name)

print(f"{name} is knighted!")

return warrior

Create warriors different ways

hero1 = Warrior("Parzival")

hero2 = Warrior.create_knight("Galahad")

Check total warriors

print(f"Total warriors: {Warrior.get_total_warriors()}")

This will output:

Galahad is knighted!

Total warriors: 2

39.3 Static Methods

Static methods are methods that don’t need to know about the class or instance. They’re just utility
functions that belong with the class:

class DiceRoller:

@staticmethod

def roll_dice(number, sides=6):

import random

return sum(random.randint(1, sides) for _ in range(number))

class Warrior:

def __init__(self, name):

self.name = name

Roll 3d6 for initial health

self.health = DiceRoller.roll_dice(3, 6) * 5

def attack(self):

Roll 2d6 for attack damage

damage = DiceRoller.roll_dice(2, 6)

print(f"{self.name} attacks for {damage} damage!")

Create a warrior with random health

hero = Warrior("Parzival")

print(f"{hero.name}'s health: {hero.health}")

hero.attack()

213

39 Advanced Class Concepts: The Deeper Mysteries

39.4 Properties: Smart Attributes

Properties let us define methods that act like attributes. They’re perfect for when we want to control how
attributes are get, set, or calculated:

class Warrior:

def __init__(self, name, health):

self._name = name # Protected attribute

self._health = health # Protected attribute

self._max_health = health

@property

def name(self):

return self._name

@property

def health(self):

return self._health

@health.setter

def health(self, value):

Don't allow health below 0 or above max

self._health = max(0, min(value, self._max_health))

@property

def health_status(self):

percent = (self.health / self._max_health) * 100

if percent > 75:

return "Healthy"

elif percent > 25:

return "Wounded"

else:

return "Critical"

Create a warrior and work with properties

hero = Warrior("Parzival", 100)

Using the name property (getter only)

print(f"Name: {hero.name}")

Using the health property (getter and setter)

print(f"Initial health: {hero.health}")

hero.health -= 30

print(f"After damage: {hero.health}")

214

39.5 Putting It All Together

hero.health = 200 # Will be capped at max_health

print(f"After healing: {hero.health}")

Using the calculated health_status property

print(f"Status: {hero.health_status}")

39.5 Putting It All Together

Let’s create a complete game character system using all these concepts:

class Character:

Class attributes

max_level = 100

experience_table = {

1: 0,

2: 100,

3: 300,

4: 600,

5: 1000

}

def __init__(self, name):

self._name = name

self._level = 1

self._experience = 0

self._health = 100

self._max_health = 100

@property

def name(self):

return self._name

@property

def level(self):

return self._level

@property

def health(self):

return self._health

@health.setter

def health(self, value):

self._health = max(0, min(value, self._max_health))

215

39 Advanced Class Concepts: The Deeper Mysteries

@property

def is_alive(self):

return self._health > 0

def gain_experience(self, amount):

self._experience += amount

Check for level up

while (self._level < self.max_level and

self._level + 1 in self.experience_table and

self._experience >= self.experience_table[self._level + 1]):

self.level_up()

def level_up(self):

if self._level < self.max_level:

self._level += 1

self._max_health += 20

self.health = self._max_health # Heal to new maximum

print(f"{self.name} reaches level {self.level}!")

print(f"Maximum health increased to {self._max_health}")

@classmethod

def create_hero(cls, name):

hero = cls(name)

hero._health = 120 # Heroes start with bonus health

print(f"A new hero rises: {name}!")

return hero

@staticmethod

def calculate_damage(strength, weapon_bonus):

import random

base_damage = strength + weapon_bonus

return random.randint(base_damage - 5, base_damage + 5)

Create and use a character

hero = Character.create_hero("Parzival")

print(f"Initial health: {hero.health}")

Try some adventures

hero.gain_experience(150) # Should level up

hero.health -= Character.calculate_damage(10, 5)

print(f"Health after battle: {hero.health}")

print(f"Still alive? {'Yes' if hero.is_alive else 'No'}")

216

39.6 Practice Time: Advanced Class Features

39.6 Practice Time: Advanced Class Features

Now it’s your turn to work with these advanced concepts! Try these challenges:

1. Create a Spell class with class attributes for different spell schools and a class method to create
preset spells:

class Spell:

Add class attributes for schools of magic

Add a class method to create common spells

pass

2. Make an Inventory class with properties to manage item weight and capacity:

class Inventory:

Use properties to manage total weight and capacity

Prevent adding items that would exceed capacity

pass

3. Create a Quest class with static methods for calculating rewards and difficulty:

class Quest:

Add static methods for quest calculations

Add properties for quest status

pass

39.7 Common Bugs to Watch Out For

As you work with these advanced concepts, be wary of these common pitfalls:

1. Modifying Class Attributes: Be careful when modifying class attributes - changes affect all in-
stances:
class Wrong:

items = [] # Class attribute - shared list!

def add_item(self, item):

self.items.append(item) # Modifies list for ALL instances

class Right:

def __init__(self):

self.items = [] # Instance attribute - separate list per instance

2. Property Naming: Don’t use the same name for the property and the protected attribute:

217

39 Advanced Class Concepts: The Deeper Mysteries

class Wrong:

@property

def name(self):

return self.name # Infinite recursion!

class Right:

@property

def name(self):

return self._name # Uses protected attribute

3. Forgetting self or cls: Class methods need cls, instance methods need self:
class Wrong:

@classmethod

def class_method(): # Missing cls parameter!

pass

class Right:

@classmethod

def class_method(cls):

pass

4. Static Method Limitations: Static methods can’t access instance or class attributes without being
passed them:
class Wrong:

value = 10

@staticmethod

def do_thing():

return value # Can't access class attribute

class Right:

value = 10

@staticmethod

def do_thing(value):

return value # Value passed as parameter

5. Property Setter Side Effects: Be careful with side effects in property setters:
class Wrong:

@property

def value(self):

return self._value

@value.setter

def value(self, new_value):

self.value = new_value # Infinite recursion!

218

39.8 Conclusion and Further Resources

class Right:

@property

def value(self):

return self._value

@value.setter

def value(self, new_value):

self._value = new_value # Sets protected attribute

39.8 Conclusion and Further Resources

You’ve nowmastered the advanced concepts of Python classes. You understand class attributes, class meth-
ods, static methods, and properties. These tools give you incredible flexibility in designing your classes
and solving complex programming problems.

To learn even more about advanced Python classes, check out these resources:

1. Python’s Official Documentation on Classes
2. Real Python’s Guide to Python Properties
3. DataCamp’s Python OOP Tutorial

Remember, these advanced features are powerful tools, but they should be used judiciously. Always choose
the simplest approach that solves your problem effectively. Keep practicing, and soon you’ll be creating
elegant and powerful class designs with ease!

219

https://docs.python.org/3/tutorial/classes.html
https://realpython.com/python-property/
https://www.datacamp.com/community/tutorials/python-oop-tutorial

39 Advanced Class Concepts: The Deeper Mysteries

220

40 The Beginning of Your Game Development
Quest

Today, we embark on an epic journey into the realm of game development using Pyxel, a retro-inspired
Python game engine. Just as a knight needs training before battling dragons, we’ll start by understanding
what Pyxel is, how to set it up, and the fundamental pattern that brings games to life.

40.1 What is Pyxel and Why Use It?

Pyxel is a Python library specifically designed for creating retro-style 2D games. Think of the classic 8-bit
games from the 1980s - Pyxel helps you create games with that nostalgic pixelated look and feel, but using
modern Python code.

Why choose Pyxel for your game development quest?

1. Simplicity: Pyxel is designed to be simple and easy to understand, making it perfect for beginners.
2. All-in-one: It includes everything you need - graphics, sound, and input handling - in one package.
3. Retro Aesthetic: Pyxel embraces the charm of 8-bit games with a fixed 16-color palette and 4-

channel sound.
4. Focus on Creativity: By limiting technical options, Pyxel helps you focus on game design rather

than complex graphics.

Here’s a glimpse of what Pyxel provides:

• A 16-color palette inspired by retro systems
• Simple sprite and tilemap handling
• Keyboard, mouse, and gamepad input
• Sound effects and music capabilities
• A built-in resource editor for creating assets

221

40 The Beginning of Your Game Development Quest

40.2 Basic Setup and Initialization

Before we can create magical game worlds, we need to prepare our spellbook (code environment). Let’s
walk through setting up Pyxel and creating your first window:

40.2.1 Installing Pyxel

To install Pyxel, you’ll need Python 3.7 or newer. Type the following inside your IDE’s terminal:

py -m pip install pyxel

40.2.2 Your First Pyxel Program

Let’s create the simplest Pyxel application - a window that displays “Hello, Pyxel!”:

import pyxel

Initialize Pyxel with a 160x120 window and a title

pyxel.init(160, 120, title="My First Pyxel Game")

Define what happens each frame

def update():

Quit the application when Q is pressed

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Define what to draw each frame

def draw():

Clear the screen with color 0 (black)

pyxel.cls(0)

Draw text at position (55, 41) with color 7 (white)

pyxel.text(55, 41, "Hello, Pyxel!", 7)

Start the Pyxel application

pyxel.run(update, draw)

When you run this code, a window will appear with the text “Hello, Pyxel!” displayed on a black back-
ground. You can exit by pressing the Q key.

222

40.3 The Game Loop: The Heart of Your Game

40.3 The Game Loop: The Heart of Your Game

Every game needs a beating heart to bring it to life. In Pyxel (and most game engines), this heart is called
the game loop. The game loop continually updates the game state and redraws the screen, creating the
illusion of movement and interaction.

Pyxel’s game loop consists of two main functions:

1. update(): This function runs before each frame is drawn. It’s where you handle:

• Player input (keyboard, mouse, gamepad)
• Game logic (moving characters, checking collisions)
• Game state changes (scoring points, changing levels)

2. draw(): This function runs after each update. It’s where you:

• Clear the screen
• Draw backgrounds, sprites, characters, and UI
• Display text and scores

Let’s examine a slightly more complex example that demonstrates the game loop:

import pyxel

class Game:

def __init__(self):

Initialize Pyxel

pyxel.init(160, 120, title="Game Loop Demo")

Set up game variables

self.player_x = 80 # Player's x position

self.player_y = 60 # Player's y position

self.player_color = 11 # Light blue

Start the game

pyxel.run(self.update, self.draw)

def update(self):

Allow quitting with Q

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x = max(self.player_x - 2, 0) # Move left but don't go below x=0 (left edge)

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x = min(self.player_x + 2, 160) # Move right but don't exceed x=160 (right edge)

if pyxel.btn(pyxel.KEY_UP):

223

40 The Beginning of Your Game Development Quest

self.player_y = max(self.player_y - 2, 0) # Move up but don't go below y=0 (top edge)

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y = min(self.player_y + 2, 120) # Move down but don't exceed y=120 (bottom edge)

def draw(self):

Clear screen with dark blue

pyxel.cls(1)

Draw player as a circle

pyxel.circ(self.player_x, self.player_y, 8, self.player_color)

Draw instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

pyxel.text(5, 15, "Press Q to quit", 7)

Create and start the game

Game()

This code creates a more interactive application where you can control a blue circle using the arrow keys.
Each frame:

1. The update() method checks for input and adjusts the player’s position.
2. The draw() method clears the screen and draws the player at their new position.

This continuous update-draw cycle creates the interactive experience that makes games feel alive.

40.4 Understanding Input Handling in Pyxel

One of the most important aspects of any game is handling player input. Pyxel provides two main func-
tions for detecting button (keyboard/gamepad) presses:

40.4.1 The Difference Between btn and btnp

1. pyxel.btn(key): Checks if a button is currently being held down

• Returns True continuously as long as the button is pressed
• Perfect for continuous actions like movement
• Example: Moving a character while an arrow key is held down

2. pyxel.btnp(key): Checks if a button was just pressed

• Returns True only on the first frame when a button is pressed
• Perfect for one-time actions like jumping, shooting, or menu selection
• Example: Quitting the game when Q is pressed (you only want this to happen once)

224

40.5 Object-Oriented Approach in Pyxel

Let’s see this difference in action:

In your update() function:

Continuous movement (good for walking)

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x += 2 # Move right continuously while key is held

One-time action (good for jumping or firing)

if pyxel.btnp(pyxel.KEY_SPACE):

self.fire_weapon() # Only fire once when space is pressed

40.4.2 Common Input Constants

Pyxel provides constants for various keys:

• Direction keys: pyxel.KEY_UP, pyxel.KEY_DOWN, pyxel.KEY_LEFT, pyxel.KEY_RIGHT
• Action keys: pyxel.KEY_SPACE, pyxel.KEY_Z, pyxel.KEY_X, pyxel.KEY_RETURN
• Control keys: pyxel.KEY_Q, pyxel.KEY_ESCAPE
• Mouse buttons: pyxel.MOUSE_BUTTON_LEFT, pyxel.MOUSE_BUTTON_RIGHT

Remember to choose the appropriate input function based on the action you want to perform!

40.5 Object-Oriented Approach in Pyxel

You might have noticed we used a class in the second example. While not required, organizing your game
using classes (object-oriented programming) has several benefits:

1. Organization: Keeps related variables and functions together
2. State Management: Makes it easier to track game state
3. Expandability: Makes it simpler to add new features
4. Readability: Creates cleaner, more understandable code

Let’s look at a more structured example (ensure pyxel_logo.png is in current directory):

import pyxel

class App:

def __init__(self):

pyxel.init(200, 140, title="Hello Python Class")

Load an image (we'll learn more about this later)

pyxel.images[0].load(0, 0, "pyxel_logo.png")

pyxel.run(self.update, self.draw)

225

40 The Beginning of Your Game Development Quest

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(0)

Display text with changing colors

pyxel.text(60, 21, "Hello, Python Class!", pyxel.frame_count % 16)

Draw the loaded image (we'll explain this more in later lessons)

pyxel.blt(24, 46, 0, 0, 0, 160, 70)

pyxel.blt(61, 66, 0, 0, 0, 38, 16)

App()

This example uses a class called App to organize our game. It also introduces a few new concepts:

• pyxel.frame_count: A variable that increases by 1 each frame
• pyxel.images: Pyxel’s image banks for storing graphics
• pyxel.blt(): The function to draw images on the screen

40.6 Practice Time: Your First Pyxel Challenge

Now it’s your turn to create a simple Pyxel application. Complete these quests to prove your newfound
skills:

1. Create a Pyxel window with a size of 200x150 and a title of your choice.

2. Make a program that displays your name in the center of the screen with changing colors.

Here’s a starting point for your quest:

import pyxel

class MyFirstGame:

def __init__(self):

Initialize Pyxel with your chosen size and title

Start the game

pyxel.run(self.update, self.draw)

def update(self):

Allow quitting with Q

Add your update logic here

226

40.7 Common Bugs to Watch Out For

def draw(self):

Clear the screen

pyxel.cls(0)

Add your drawing code here

Create and start your game

MyFirstGame()

40.7 Common Bugs to Watch Out For

As you begin your Pyxel journey, beware of these common pitfalls:

1. Forgetting to import pyxel: Always start your code with import pyxel.

2. Not calling pyxel.init(): This must be called before using any other Pyxel functions.

3. Undefined variables: Make sure all variables are defined before using them.

4. Drawing outside the screen: Remember that coordinates start at (0,0) in the top-left corner. Draw-
ing outside the window size will not cause an error, but you won’t see the results.

5. Forgetting to call pyxel.run(): Without this, your game won’t start.

6. Using colors outside the palette: Pyxel only supports 16 colors (0-15). Using a color number outside
this range will cause errors.

7. Infinite loops: Be careful not to create loops without exit conditions in the update function, as they
can freeze your game.

40.8 Conclusion and Resources for Further Quests

You’ve taken your first steps into the realm of game development with Pyxel. You now understand what
Pyxel is, how to set it up, and the fundamental game loop pattern that brings games to life.

To continue your game development journey, check out these resources:

1. Pyxel’s Official GitHub Repository - Contains documentation, examples, and the latest updates.

2. Pyxel Documentation - The official guide to all Pyxel’s features and functions.

3. Pyxel Examples - A collection of example games and demos to inspire you.

4. Introduction to Game Development with Pyxel - A beginner-friendly guide to game development
concepts.

227

https://github.com/kitao/pyxel
https://github.com/kitao/pyxel/blob/main/README.md
https://github.com/kitao/pyxel/tree/main/pyxel/examples
https://github.com/kitao/pyxel/wiki/How-To-Start-Programming-With-Pyxel

40 The Beginning of Your Game Development Quest

In our next lesson, we’ll explore Pyxel’s color system and coordinate system, giving us the foundation to
create more visually engaging games. Keep practicing, keep experimenting, and remember - every master
game developer started where you are now!

228

41 Mapping Your Game World: Colors and
Coordinates

In our previous lesson, we learned about Pyxel and created our first application. Today, we’ll explore two
fundamental aspects of any game world: colors and coordinate systems. Just as a cartographer needs to
understand colors and coordinates to create maps, we need these skills to build our game worlds.

41.1 The Magic Palette: Pyxel’s 16 Colors

One of the charming aspects of Pyxel is its fixed 16-color palette, inspired by retro game systems. Like a
painter with a limited but carefully chosen set of paints, this constraint encourages creativity and gives
your games that authentic retro feel.

Here are Pyxel’s 16 colors, numbered from 0 to 15:

0. Black
1. Dark Blue
2. Purple
3. Dark Green
4. Brown
5. Dark Gray
6. Light Gray
7. White
8. Red
9. Orange
10. Yellow
11. Light Green
12. Light Blue
13. Gray
14. Pink
15. Peach

Let’s create a simple program to visualize this palette:

229

41 Mapping Your Game World: Colors and Coordinates

import pyxel

class ColorPalette:

def __init__(self):

pyxel.init(160, 160, title="Pyxel Color Palette")

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(7) # Clear screen with white

Draw color squares and labels

square_size = 20

cols = 4

for i in range(16):

Calculate position in a 4x4 grid

x = 20 + (i % cols) * (square_size + 20)

y = 20 + (i // cols) * (square_size + 20)

Draw colored square

pyxel.rect(x, y, square_size, square_size, i)

Draw color number (black or white depending on color brightness)

text_color = 7 if i < 6 or i == 8 else 0

pyxel.text(x + 6, y + 6, str(i), text_color)

ColorPalette()

When you run this code, you’ll see all 16 colors displayed in a grid, each labeled with its color number.

Remember, whenever you need to specify a color in Pyxel (for drawing shapes, text, or clearing the screen),
you’ll use these color numbers. For example:

pyxel.cls(0) # Clear the screen with color 0 (black)

pyxel.rect(10, 10, 20, 30, 8) # Draw a red rectangle

pyxel.text(40, 40, "Hello", 7) # Draw white text

230

41.2 The Cartographer’s Grid: Pyxel’s Coordinate System

41.1.1 Pro Tip: Choosing the Right Color for Text

For text to be readable, it needs good contrast with the background. On dark colors (0-6, 8), use light text
(7, 10, 11). On light colors (7, 9-15), use dark text (0, 1, 5).

41.2 The Cartographer’s Grid: Pyxel’s Coordinate System

Just as mapmakers use a grid system to pinpoint locations, Pyxel uses a coordinate system to position
elements on the screen. Understanding this system is crucial for placing your game elements exactly where
you want them.

In Pyxel (and most computer graphics):

• The origin (0, 0) is at the top-left corner of the screen
• The X-coordinate increases as you move to the right
• The Y-coordinate increases as you move down

This might seem counter-intuitive if you’re used to mathematical coordinates (where Y increases as you
go up), but this system is standard in most game and graphics programming.

Let’s create a visual representation of this coordinate system:

import pyxel

class CoordinateSystem:

def __init__(self):

pyxel.init(160, 120, title="Coordinate System")

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(6) # Clear with light gray

Draw coordinate lines

pyxel.line(0, 0, 159, 0, 5) # Top edge

pyxel.line(0, 0, 0, 119, 5) # Left edge

Draw axis labels

pyxel.text(75, 5, "X increases →", 0)

pyxel.text(5, 60, "Y increases ↓", 0)

Draw origin point

231

41 Mapping Your Game World: Colors and Coordinates

pyxel.circ(0, 0, 3, 8) # Red circle at origin

pyxel.text(5, 5, "(0,0)", 0)

Draw some example points

points = [(40, 30), (80, 60), (120, 90)]

for x, y in points:

pyxel.circ(x, y, 3, 11) # Green circle

pyxel.text(x + 5, y, f"({x},{y})", 0)

Show current mouse position

pyxel.text(5, 110, f"Mouse: ({pyxel.mouse_x},{pyxel.mouse_y})", 8)

CoordinateSystem()

When you run this code, you’ll see:

• The origin (0,0) marked in the top-left
• Example points with their coordinates
• Your mouse position updating in real-time

41.3 Combining Colors and Coordinates: A Simple Drawing

Now, let’s bring our knowledge of colors and coordinates together to create a simple drawing:

import pyxel

class SimpleDrawing:

def __init__(self):

pyxel.init(160, 120, title="Simple Drawing")

self.draw_sun = True

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Toggle sun/moon with space key

if pyxel.btnp(pyxel.KEY_SPACE):

self.draw_sun = not self.draw_sun

def draw(self):

Draw sky

232

41.4 Practice Time: Your Color and Coordinate Quest

sky_color = 12 if self.draw_sun else 1 # Light blue for day, dark blue for night

pyxel.cls(sky_color)

Draw ground

pyxel.rect(0, 90, 160, 30, 3) # Dark green ground

Draw sun or moon

celestial_color = 10 if self.draw_sun else 7 # Yellow sun, white moon

pyxel.circ(120, 30, 15, celestial_color)

If night, add some stars

if not self.draw_sun:

for x, y in [(20, 20), (40, 10), (60, 30), (80, 15), (100, 25)]:

pyxel.pset(x, y, 7) # White stars

Draw a house

pyxel.rect(20, 50, 40, 40, 4) # Brown house

pyxel.rect(30, 70, 10, 20, 1) # Dark blue door

pyxel.rect(50, 60, 10, 10, 13) # Gray window

Draw roof

pyxel.tri(20, 50, 40, 30, 60, 50, 8) # Red roof

Instructions

pyxel.text(5, 5, "Press SPACE to toggle day/night", 7)

pyxel.text(5, 15, "Press Q to quit", 7)

SimpleDrawing()

This code creates a simple scene with a house, ground, and either a sun or moon depending on whether
it’s day or night. You can toggle between day and night by pressing the space bar.

Notice how we:

• Use different colors for the sky (12 for day, 1 for night)
• Position the house using specific x and y coordinates
• Draw the ground at the bottom of the screen (higher y values)
• Use a variety of Pyxel’s drawing functions with different colors

41.4 Practice Time: Your Color and Coordinate Quest

Now it’s your turn to create a Pyxel application using your newfound knowledge of colors and coordinates.
Complete these challenges:

233

41 Mapping Your Game World: Colors and Coordinates

1. Create a simple landscape with a sky, ground, sun, and at least three different colored elements
(trees, clouds, mountains, etc.).

2. Add a moving element (like a bird or car) that moves across the screen and wraps around when it
reaches the edge.

Here’s a starting point for your quest:

import pyxel

class MyLandscape:

def __init__(self):

pyxel.init(160, 120, title="My Landscape")

Initialize any variables you need

self.moving_x = 0 # For your moving element

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update your moving element's position

self.moving_x = (self.moving_x + 1) % 160

Check for mouse clicks

(We'll add code for this part)

def draw(self):

Clear the screen

pyxel.cls(12) # Light blue sky

Draw your landscape elements

(You'll add code here)

Draw your moving element

(You'll add code here)

Draw any interactive elements

(You'll add code here)

Create and start your landscape

MyLandscape()

234

41.5 Common Bugs to Watch Out For

41.5 Common Bugs to Watch Out For

As you experiment with colors and coordinates in Pyxel, watch out for these common issues:

1. Using invalid color numbers: Pyxel only supports colors 0-15. Using numbers outside this range
will cause errors.

2. Off-by-one errors in coordinates: Remember that coordinates start at 0, and the maximum coor-
dinate is one less than the dimension (e.g., in a 160x120 window, valid x-coordinates are 0-159 and
valid y-coordinates are 0-119).

3. Drawing outside the screen: Elements drawn outside the visible area won’t cause errors, but they
won’t be visible. Use the keep_in_bounds function to prevent this.

4. Forgetting the coordinate system orientation: Remember that y increases as you go down. If some-
thing appears in the wrong place vertically, you might be thinking about y backwards.

5. Not accounting for element size: When positioning elements, remember to account for their width
and height. The position specifies the top-left corner, not the center.

41.6 Conclusion and Resources for Further Exploration

You’ve nowmastered two fundamental aspects of game development: colors and coordinate systems. With
these tools, you can precisely position and colorize elements in your game world.

To deepen your understanding of colors and coordinates in game development, check out these
resources:

1. Pyxel Color Palette Reference - See the exact RGB values of Pyxel’s 16 colors.

2. Pixel Art Tutorials - Learn how to create pixel art using limited color palettes.

3. Coordinate Systems in Game Development - An in-depth exploration of different coordinate sys-
tems used in games.

4. Color Theory for Pixel Art - Learn how to create effective color schemes with limited palettes.

In our next lesson, we’ll explore simple drawing primitives in Pyxel, which will allow us to create more
complex and interesting visuals for our games. Keep practicing with colors and coordinates – they’re the
foundation upon which your game worlds will be built!

235

https://github.com/kitao/pyxel/wiki/How-To-Start-Programming-With-Pyxel
https://blog.studiominiboss.com/pixelart
https://www.redblobgames.com/grids/coordinates/
https://pixelart.academy/blog/2019/04/16/color-theory-for-pixel-art-a-short-guide/

41 Mapping Your Game World: Colors and Coordinates

236

42 The Artist’s Tools: Drawing Primitives and
Shapes

In our previous lessons, we’ve set up Pyxel and learned about colors and coordinates. Today, we’ll explore
the fundamental building blocks of any game’s visuals: drawing primitives and shapes. Much like a painter
needs brushes, pens, and various tools to create art, a game developer needs different drawing functions
to create game elements.

42.1 What are Drawing Primitives?

Drawing primitives are the basic shapes and elements that can be combined to create complex images.
In Pyxel, these include points, lines, rectangles, circles, triangles, and text. These simple shapes are the
foundation of everything you’ll draw in your games - from characters and obstacles to user interfaces and
backgrounds.

Let’s explore each of these magical drawing tools and learn how to wield them effectively!

42.2 The Point: The Smallest Unit of Art

A point is the simplest drawing primitive - just a single pixel on the screen. In Pyxel, we use the pset()

function to draw a point:

pyxel.pset(x, y, col)

• x and y are the coordinates where you want to draw the point
• col is the color number (0-15)

Let’s create a simple example that draws a few stars in the night sky:

import pyxel

class PointsExample:

def __init__(self):

pyxel.init(160, 120, title="Drawing Points")

pyxel.run(self.update, self.draw)

237

42 The Artist’s Tools: Drawing Primitives and Shapes

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw some stars as individual points

pyxel.pset(20, 20, 7) # White star

pyxel.pset(40, 15, 7)

pyxel.pset(60, 25, 7)

pyxel.pset(100, 10, 7)

pyxel.pset(120, 30, 7)

pyxel.text(5, 5, "Stars drawn with pset()", 7)

PointsExample()

This simple example creates a dark blue background with five white stars drawn as individual points.

42.3 The Line: Connecting the Dots

Lines allow us to connect two points. In Pyxel, we use the line() function:

pyxel.line(x1, y1, x2, y2, col)

• x1 and y1 are the coordinates of the starting point
• x2 and y2 are the coordinates of the ending point
• col is the color number

Let’s create a simple house outline with lines:

import pyxel

class LineExample:

def __init__(self):

pyxel.init(160, 120, title="Drawing Lines")

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

238

42.4 The Rectangle: Building Blocks of Games

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw a house outline with lines

Base of the house

pyxel.line(40, 80, 80, 80, 7) # Bottom

pyxel.line(40, 80, 40, 50, 7) # Left wall

pyxel.line(80, 80, 80, 50, 7) # Right wall

Roof

pyxel.line(40, 50, 60, 30, 7) # Left roof

pyxel.line(60, 30, 80, 50, 7) # Right roof

Door

pyxel.line(55, 80, 55, 65, 7) # Left of door

pyxel.line(65, 80, 65, 65, 7) # Right of door

pyxel.line(55, 65, 65, 65, 7) # Top of door

pyxel.text(5, 5, "House drawn with line()", 7)

This code creates a simple house outline using lines to connect various points.

42.4 The Rectangle: Building Blocks of Games

Rectangles are perhaps the most commonly used shape in games. They’re perfect for buildings, platforms,
buttons, and more. Pyxel offers two rectangle functions:

• rect(): Draws a filled rectangle
• rectb(): Draws just the outline of a rectangle

pyxel.rect(x, y, w, h, col) # Filled rectangle

pyxel.rectb(x, y, w, h, col) # Rectangle outline

• x and y are the coordinates of the top-left corner
• w and h are the width and height of the rectangle
• col is the color number

Let’s draw some rectangles:

import pyxel

class RectangleExample:

def __init__(self):

239

42 The Artist’s Tools: Drawing Primitives and Shapes

pyxel.init(160, 120, title="Drawing Rectangles")

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw a filled rectangle (building)

pyxel.rect(40, 40, 80, 70, 5) # Gray building

Draw rectangle outlines (windows)

pyxel.rectb(50, 50, 15, 15, 7) # White window outline

pyxel.rectb(95, 50, 15, 15, 7) # White window outline

pyxel.rectb(50, 75, 15, 15, 7) # White window outline

pyxel.rectb(95, 75, 15, 15, 7) # White window outline

Draw a filled rectangle (door)

pyxel.rect(75, 80, 10, 30, 4) # Brown door

pyxel.text(5, 5, "Building drawn with rect() and rectb()", 7)

This code creates a building using a filled rectangle, with door and windows drawn using a combination
of filled and outlined rectangles.

42.5 The Circle: Perfect Rounds

Circles are ideal for many game elements like balls, planets, and coins. Pyxel offers two circle functions:

• circ(): Draws a filled circle
• circb(): Draws just the outline of a circle

pyxel.circ(x, y, r, col) # Filled circle

pyxel.circb(x, y, r, col) # Circle outline

• x and y are the coordinates of the center of the circle
• r is the radius of the circle
• col is the color number

Let’s create a simple solar system with circles:

240

42.6 The Triangle: Adding Dimension

import pyxel

class CircleExample:

def __init__(self):

pyxel.init(160, 120, title="Drawing Circles")

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw the sun (filled circle)

pyxel.circ(80, 60, 15, 10) # Yellow sun

Draw planet orbits (circle outlines)

pyxel.circb(80, 60, 30, 13) # Light blue orbit

pyxel.circb(80, 60, 50, 13) # Light blue orbit

Draw planets (filled circles)

pyxel.circ(80, 30, 5, 11) # Green planet

pyxel.circ(130, 60, 8, 8) # Red planet

pyxel.text(5, 5, "Solar system drawn with circ() and circb()", 7)

This code creates a simple solar system with a sun, planets, and orbits, all using circles.

42.6 The Triangle: Adding Dimension

Triangles are versatile shapes that can be used for a variety of game elements, from mountain ranges to
decoration. Pyxel offers two triangle functions:

• tri(): Draws a filled triangle
• trib(): Draws just the outline of a triangle

pyxel.tri(x1, y1, x2, y2, x3, y3, col) # Filled triangle

pyxel.trib(x1, y1, x2, y2, x3, y3, col) # Triangle outline

• x1, y1, x2, y2, x3, y3 are the coordinates of the three corners of the triangle
• col is the color number

241

42 The Artist’s Tools: Drawing Primitives and Shapes

Let’s draw some mountains with triangles:

import pyxel

class TriangleExample:

def __init__(self):

pyxel.init(160, 120, title="Drawing Triangles")

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw a sky

pyxel.rect(0, 0, 160, 80, 12) # Light blue sky

Draw mountains with filled triangles

pyxel.tri(0, 80, 50, 30, 100, 80, 13) # Gray mountain

pyxel.tri(80, 80, 130, 25, 160, 80, 13) # Gray mountain

Draw a simple pine tree with a triangle and rectangle

pyxel.rect(70, 80, 6, 10, 4) # Brown trunk

pyxel.tri(63, 80, 73, 60, 83, 80, 3) # Green triangle for leaves

pyxel.text(5, 5, "Mountains drawn with tri()", 7)

This code creates a simple mountain landscape using triangles, with a sky drawn as a rectangle and a small
pine tree made from a rectangle (trunk) and a triangle (foliage).

42.7 Text: The Power of Words

Text is essential for displaying information to the player, such as scores, instructions, or dialog. In Pyxel,
we use the text() function:

pyxel.text(x, y, text, col)

• x and y are the coordinates of the top-left corner of the text
• text is the string to display
• col is the color number

242

42.8 Creating a Simple UI with Shapes and Text

Let’s explore different ways to use text:

import pyxel

class TextExample:

def __init__(self):

pyxel.init(160, 120, title="Drawing Text")

self.score = 12550

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw a simple title

pyxel.text(40, 10, "SPACE ADVENTURE", 7)

Draw game stats with different colors

pyxel.text(10, 30, "SCORE:", 7)

pyxel.text(50, 30, str(self.score), 10) # Yellow for the score

pyxel.text(10, 40, "LEVEL:", 7)

pyxel.text(50, 40, "5", 11) # Green for the level

pyxel.text(10, 50, "LIVES:", 7)

pyxel.text(50, 50, "3", 8) # Red for lives

Draw instructions

pyxel.text(10, 100, "Press Z to shoot", 13)

pyxel.text(10, 110, "Press Q to quit", 13)

This example shows how to display different types of text on the screen with various colors.

42.8 Creating a Simple UI with Shapes and Text

Now, let’s combine what we’ve learned to create a simple game UI that shows health, score, and a mini-
map:

243

42 The Artist’s Tools: Drawing Primitives and Shapes

import pyxel

class GameUI:

def __init__(self):

pyxel.init(160, 120, title="Game UI Example")

self.health = 70 # Percentage

self.score = 3500

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw game title

pyxel.text(60, 5, "DUNGEON QUEST", 7)

Draw health bar

pyxel.text(10, 20, "HEALTH:", 7)

pyxel.rectb(60, 20, 52, 7, 7) # Health bar outline

pyxel.rect(61, 21, int(self.health / 2), 5, 8) # Red health bar

Draw score

pyxel.text(10, 35, "SCORE:", 7)

pyxel.text(60, 35, str(self.score), 10)

Draw a mini-map in the corner

pyxel.rectb(116, 10, 40, 40, 7) # Mini-map border

Draw some elements on the mini-map

pyxel.rect(125, 25, 4, 4, 11) # Player position (green)

pyxel.circ(140, 20, 2, 8) # Enemy position (red)

pyxel.pset(120, 30, 10) # Item position (yellow)

Draw instructions

pyxel.text(10, 100, "Use arrow keys to play", 13)

pyxel.text(10, 110, "Q: Quit", 13)

This example demonstrates how to create a simple game UI using various drawing primitives together.

244

42.9 Practice Time: Your Drawing Primitive Quest

42.9 Practice Time: Your Drawing Primitive Quest

Now it’s your turn to create a Pyxel application using the drawing primitives you’ve learned. Complete
these challenges:

1. Create a scene that uses at least one of each drawing primitive: point, line, rectangle, circle, triangle,
and text.

2. Include at least three different colors in your scene.

3. Use at least one filled shape and one outline shape.

Here’s a starting point for your quest:

import pyxel

class MyDrawingApp:

def __init__(self):

pyxel.init(160, 120, title="My Drawing App")

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(0) # Clear screen with black

Draw your scene using different primitives

Use at least one point (pset)

Use at least one line

Use at least one rectangle (rect or rectb)

Use at least one circle (circ or circb)

Use at least one triangle (tri or trib)

Use at least one text element

Don't forget to use different colors!

42.10 Common Bugs to Watch Out For

As you experiment with drawing primitives in Pyxel, watch out for these common issues:

1. Coordinate System: Remember that the origin (0,0) is at the top-left corner, with y-values increas-
ing downward. This can be confusing if you’re used to other coordinate systems.

245

42 The Artist’s Tools: Drawing Primitives and Shapes

2. Coordinate Order: For shapes with multiple points (lines, triangles), make sure you’re providing
the coordinates in the correct order.

3. Off-by-one Errors: When drawing shapes, remember that the specified coordinates are for the top-
left corner (for rectangles) or exact points (for lines and triangles), not the center.

4. Missing Parameters: Each drawing function requires a specific number of parameters. Be sure to
provide all of them, including the color.

5. Drawing Order: Elements are drawn in the order your code executes them. If something appears
“behind” another element when it should be in front, try changing the order of your drawing com-
mands.

6. Text Positioning: Text is drawn from the top-left corner. If text appears cut off, make sure it has
enough space to be displayed.

7. Color Numbers: Pyxel uses color numbers 0-15. If you provide a color number outside this range,
it will be wrapped around (e.g., color 16 becomes color 0).

42.11 Conclusion and Resources for Further Mastery

You’ve now mastered the fundamental drawing primitives in Pyxel. With these tools, you can create vir-
tually any 2D visual you might need for your games, from simple shapes to complex scenes.

To further enhance your artistic skills in game development, check out these resources:

1. Pyxel Drawing Functions Documentation - Detailed information about all drawing functions in
Pyxel.

2. Pixel Art Techniques - Learn techniques for creating effective pixel art, which pairs perfectly with
Pyxel’s retro aesthetic.

3. Game Art Tips for Beginners - Tips for creating effective game art, even if you’re not an artist.

4. Retro Game Graphics Guide - A guide to creating retro-style game graphics.

In our next lesson, we’ll explore loading and using sprites/images in Pyxel, which will allow us to create
even more sophisticated and detailed visuals for our games. Keep practicing with drawing primitives –
they’ll form the foundation of your game development toolkit!

246

https://github.com/kitao/pyxel/wiki
https://blog.studiominiboss.com/pixelart
https://www.gamasutra.com/blogs/ChrisHildenbrand/20111015/90415/2D_Game_Art_For_Programmers__Part_1_updated.php
https://www.smashingmagazine.com/2015/04/video-game-graphics-how-to-create-pixel-art-for-games/

43 The Power of Imagery: Loading and Using
Sprites

In our previous lessons, we explored Pyxel’s game loop, coordinate system, and drawing primitives. Today,
we’ll take our first step into working with pre-made images by learning how to load and display sprites in
our games.

43.1 What are Sprites and Why Do We Need Them?

In game development, a sprite is a 2D image that represents a character, object, or environment element
in your game. Sprites are essentially the digital actors and props on your game’s stage.

While we could draw everything using primitives (as we learned in our last lesson), this has several limita-
tions:

1. Time-consuming: Drawing complex characters or objects with primitives is tedious and repetitive
2. Performance: Redrawing complex shapes every frame can be inefficient
3. Detail: Primitives limit the level of detail you can achieve in your visuals

Sprites solve these problems by letting us pre-create our visual elements once and then simply place them
in our game world as needed. This is much like how a puppeteer creates detailed puppets ahead of time,
rather than crafting new ones during each performance.

43.2 The Pyxel Image Bank: Your Sprite Storage

Pyxel provides a structure called the image bank to store your game’s sprites and images. Think of it as a
magical art gallery where your game’s visual elements are kept ready for use.

The image bank consists of several pages (numbered 0-2), each with a resolution of 256x256 pixels. Each
page can store multiple sprites that you can reference in your game.

Here’s how the image bank is structured:

pyxel.images[0] # First image bank page (0)

pyxel.images[1] # Second image bank page (1)

pyxel.images[2] # Third image bank page (2)

247

43 The Power of Imagery: Loading and Using Sprites

43.3 Loading Images: Two Simple Methods

Before we can display sprites in our game, we need to load them into the image bank. Pyxel gives us two
primary ways to do this:

43.3.1 Method 1: Loading an External Image File

You can load PNG files directly into Pyxel’s image bank:

import pyxel

pyxel.init(160, 120, title="Sprite Example")

Load an image file into image bank 0 at position (0,0)

pyxel.images[0].load(0, 0, "character.png")

This code loads a PNG file named “character.png” into the first image bank (0) at the top-left position
(0,0). The image will occupy the corresponding space in the image bank based on its dimensions.

43.3.2 Method 2: Using the Pyxel Editor

Pyxel includes a built-in editor that lets you create sprite art directly. To open it:

import pyxel

Open the Pyxel editor

pyxel.editor()

or in the terminal:

py -m pyxel edit

This launches the Pyxel editor, where you can create and edit sprites, then save them in a resource file
(.pyxres) to load in your game:

import pyxel

pyxel.init(160, 120, title="Sprite Example")

Load resources from a .pyxres file

pyxel.load("game_resources.pyxres")

248

43.4 Displaying Sprites with blt()

43.4 Displaying Sprites with blt()

Once you have sprites in your image bank, you can display them in your game using the blt() function,
which stands for “block transfer”:

pyxel.blt(x, y, img, u, v, w, h, [colkey])

Let’s break down these important parameters:

• x, y: Where to draw the sprite on the screen
• img: Which image bank to use (0-2)
• u, v: The top-left position of the sprite in the image bank
• w, h: The width and height of the sprite to draw
• colkey (optional): The color to treat as transparent (defaults to None)

Here’s a simple example that displays a sprite at the center of the screen:

import pyxel

class SimpleSprite:

def __init__(self):

pyxel.init(160, 120, title="Simple Sprite")

We're assuming there's already an 8x8 sprite at position (0,0) in image bank 0

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw the sprite at the center of the screen

Parameters: x, y, img_bank, sprite_x, sprite_y, width, height, transparent_color

pyxel.blt(76, 56, 0, 0, 0, 8, 8, 0)

Display instructions

pyxel.text(5, 5, "Press Q to quit", 7)

SimpleSprite()

In this example:

1. We display the sprite from image bank 0, position (0,0)
2. We draw it at position (76, 56) which is near the center of our 160x120 screen

249

43 The Power of Imagery: Loading and Using Sprites

3. The sprite is 8x8 pixels in size
4. The last parameter 0 means that color 0 in the sprite will be treated as transparent

43.5 Moving Sprites: Bringing Your Game to Life

Of course, most games don’t just display static sprites - they move them around! Let’s create a simple
example where we can control a sprite with the arrow keys:

import pyxel

class MovingSprite:

def __init__(self):

pyxel.init(160, 120, title="Moving Sprite")

We're assuming there's already an 8x8 sprite at position (0,0) in image bank 0

Initialize sprite position

self.sprite_x = 80

self.sprite_y = 60

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Move sprite with arrow keys

if pyxel.btn(pyxel.KEY_LEFT):

self.sprite_x = max(self.sprite_x - 2, 0)

if pyxel.btn(pyxel.KEY_RIGHT):

self.sprite_x = min(self.sprite_x + 2, 152) # 160 - 8

if pyxel.btn(pyxel.KEY_UP):

self.sprite_y = max(self.sprite_y - 2, 0)

if pyxel.btn(pyxel.KEY_DOWN):

self.sprite_y = min(self.sprite_y + 2, 112) # 120 - 8

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw the sprite at its current position

pyxel.blt(self.sprite_x, self.sprite_y, 0, 0, 0, 8, 8, 0)

Display instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

250

43.6 Transparency in Sprites

pyxel.text(5, 15, "Press Q to quit", 7)

MovingSprite()

In this example:

1. We store the sprite’s position in variables sprite_x and sprite_y

2. We update these variables based on arrow key presses
3. We use min and max to keep the sprite within the screen boundaries
4. We draw the sprite at its current position each frame

43.6 Transparency in Sprites

You might have noticed that in our blt() calls, we’ve been including a final parameter 0. This is the colkey
parameter, which specifies which color in your sprite should be treated as transparent.

In Pyxel, color 0 (black) is often used as the transparent color in sprites. When a pixel in your sprite has
this color, Pyxel won’t draw it, allowing the background to show through.

For example, if we have a sprite of a circle with color 0 around it, only the circle will appear when drawn,
not the rectangular background:

Draw a sprite with transparency

pyxel.blt(x, y, 0, 0, 0, 8, 8, 0) # Color 0 is transparent

Draw the same sprite without transparency

pyxel.blt(x, y, 0, 0, 0, 8, 8) # No transparent color

You can set any color (0-15) as the transparent color, or omit the parameter entirely if you don’t want any
transparency.

43.7 Practice Time: Your First Sprite Quest

Now it’s your turn to create a Pyxel application using sprites. Complete these challenges:

1. Create a game that displays a sprite (assume it’s at position 0,0 in image bank 0)

2. Make the sprite move with the arrow keys

3. Add a second non-moving sprite somewhere else on the screen (using the same sprite image)

Here’s a starting point for your quest:

251

43 The Power of Imagery: Loading and Using Sprites

import pyxel

class MyFirstSpriteGame:

def __init__(self):

pyxel.init(160, 120, title="My First Sprite Game")

We're assuming there's already an 8x8 sprite at position (0,0) in image bank 0

Initialize your variables here

self.player_x = 80

self.player_y = 60

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update player position based on arrow keys

Your code here

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw the player sprite

Your code here

Draw a stationary sprite

Your code here

Display instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

Create and start your game

MyFirstSpriteGame()

43.8 Common Bugs to Watch Out For

As you start working with sprites in Pyxel, watch out for these common issues:

1. Incorrect File Paths: If you’re loading sprites from external files, make sure the file paths are correct
and the files exist in the expected location.

2. Transparent Color Issues: If your sprite has an unexpected background, check that you’ve specified
the correct transparent color in your blt() call.

252

43.9 Conclusion and Resources for Further Exploration

3. DrawingOutside the Screen: If you position sprites outside the screen boundaries, they won’t cause
errors but won’t be visible. Use boundary checks to keep sprites in view.

4. Coordinate Confusion: Remember that (u, v) coordinates refer to positions within the image
bank, while (x, y) coordinates refer to positions on the screen.

5. Sprite Size Errors: Make sure the width and height parameters in your blt() call match the actual
dimensions of your sprite, or you may get unexpected results.

43.9 Conclusion and Resources for Further Exploration

You’ve now learned the fundamentals of loading and displaying sprites in your Pyxel games. This is just
the beginning of your journey with sprites, but these basics will serve as the foundation for more advanced
sprite techniques in future lessons.

To further enhance your understanding of sprites in Pyxel, check out these resources:

1. Pyxel GitHubDocumentation -The official documentation for Pyxel, including details on the blt()
function and image banks.

2. Pyxel Examples - Official examples that demonstrate sprite usage in various contexts.

3. Pixel Art for Beginners - If you want to create your own sprites, these beginner tutorials will help
you get started.

In our next lessons, we’ll build on this foundation to explore more advanced sprite techniques like flipping,
animation, and using multiple sprites together. Keep practicing with basic sprite loading and display –
mastering these fundamentals is crucial for creating engaging visual experiences in your games!

253

https://github.com/kitao/pyxel
https://github.com/kitao/pyxel/tree/main/pyxel/examples
https://lospec.com/pixel-art-tutorials/tags/beginner

43 The Power of Imagery: Loading and Using Sprites

254

44 Mastering the Image Bank: Organizing Your
Game’s Visual Assets

In our previous lessons, we learned about loading sprites and drawing shapes and text. Today, we’ll delve
deeper into working with Pyxel’s image bank system. Consider this lesson your guide to organizing and
managing all the visual assets your game needs – from character sprites to background tiles.

44.1 Organizing Your Image Bank Effectively

When developing games, you’ll often need many different sprites: player characters, enemies, items, UI
elements, background tiles, and more. Organizing these sprites effectively in your image bank will make
your code cleaner and your development process smoother.

Here’s a good strategy for organizing your image bank:

1. Group related sprites together: For example, keep all player animations in one section, all enemy
sprites in another.

2. Use a grid system: Place sprites at regular intervals (e.g., every 16 or 32 pixels) to make positions
easier to remember.

3. Create a sprite map: Document what’s where in your image bank to help you remember sprite
positions.

Let’s see this in practice:

import pyxel

class ImageBankOrganization:

def __init__(self):

pyxel.init(160, 120, title="Image Bank Organization")

Let's assume we have a player character (16x16), some items (8x8),

and enemy sprites (16x16) that we want to organize in our image bank

Define sprite locations in the image bank

self.PLAYER_LOCATION = (0, 0) # Player at top-left (0,0)

self.ITEMS_START = (0, 16) # Items start below player

self.ENEMIES_START = (0, 32) # Enemies start below items

255

44 Mastering the Image Bank: Organizing Your Game’s Visual Assets

For this example, let's assume these sprites already exist in the image bank

In a real game, you'd load them from a .pyxres file or create them

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw our organized sprites

Player (16x16)

pyxel.blt(20, 20, 0, *self.PLAYER_LOCATION, 16, 16, 0)

Items (8x8) - we'll draw three items from our item row

pyxel.blt(50, 20, 0, self.ITEMS_START[0], self.ITEMS_START[1], 8, 8, 0)

pyxel.blt(70, 20, 0, self.ITEMS_START[0] + 8, self.ITEMS_START[1], 8, 8, 0)

pyxel.blt(90, 20, 0, self.ITEMS_START[0] + 16, self.ITEMS_START[1], 8, 8, 0)

Enemy (16x16)

pyxel.blt(120, 20, 0, self.ENEMIES_START[0], self.ENEMIES_START[1], 16, 16, 0)

Draw labels and grid lines to visualize our organization

pyxel.text(20, 40, "Player", 7)

pyxel.text(50, 40, "Item 1", 7)

pyxel.text(70, 40, "Item 2", 7)

pyxel.text(90, 40, "Item 3", 7)

pyxel.text(120, 40, "Enemy", 7)

Draw image bank organization schema

self.draw_image_bank_schema(20, 60)

def draw_image_bank_schema(self, x, y):

Draw a small representation of how our image bank is organized

pyxel.rectb(x, y, 64, 48, 7) # Image bank border

Player section

pyxel.rect(x, y, 16, 16, 11)

pyxel.text(x + 2, y + 4, "Player", 0)

Items section

pyxel.rect(x, y + 16, 24, 8, 10)

256

44.2 Creating a Sprite Atlas: Named Sprites for Easy Reference

pyxel.text(x + 4, y + 18, "Items", 0)

Enemies section

pyxel.rect(x, y + 32, 32, 16, 8)

pyxel.text(x + 4, y + 38, "Enemies", 0)

pyxel.text(x, y - 10, "Image Bank Organization", 7)

ImageBankOrganization()

This example demonstrates:

1. How to organize different types of sprites in the image bank
2. How to reference those organized sprites in your code using constants
3. A visual representation of the organization scheme

44.2 Creating a Sprite Atlas: Named Sprites for Easy Reference

To make working with multiple sprites even easier, you can create a sprite atlas – a dictionary that maps
sprite names to their positions and dimensions in the image bank. This approach offers several benefits:

1. You can reference sprites by name instead of remembering coordinates
2. It’s easier to change sprite positions without breaking your code
3. Your code becomes more readable and maintainable

Here’s how to implement a sprite atlas:

import pyxel

class SpriteAtlas:

def __init__(self):

pyxel.init(160, 120, title="Sprite Atlas")

pyxel.load("bank.pyxres")

Create a sprite atlas - a dictionary mapping sprite names to their

image bank information: (image_bank, x, y, width, height, colorkey)

self.atlas = {

"player": (0, 0, 0, 16, 16, 0),

"coin": (0, 0, 16, 8, 8, 0),

"potion": (0, 8, 16, 8, 8, 0),

"key": (0, 16, 16, 8, 8, 0),

"goblin": (0, 0, 32, 16, 16, 0),

"slime": (0, 16, 32, 16, 16, 0)

}

257

44 Mastering the Image Bank: Organizing Your Game’s Visual Assets

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw sprites using our atlas

self.draw_sprite("player", 20, 20)

self.draw_sprite("coin", 50, 20)

self.draw_sprite("potion", 70, 20)

self.draw_sprite("key", 90, 20)

self.draw_sprite("goblin", 120, 20)

Draw labels

pyxel.text(20, 40, "player", 7)

pyxel.text(50, 40, "coin", 7)

pyxel.text(70, 40, "potion", 7)

pyxel.text(90, 40, "key", 7)

pyxel.text(120, 40, "goblin", 7)

Explain what we're doing

pyxel.text(10, 60, "Using a sprite atlas to reference sprites by name", 7)

pyxel.text(10, 70, "Example: draw_sprite(\"player\", x, y)", 7)

def draw_sprite(self, name, x, y):

Draw a sprite using its name from the atlas

bank, u, v, w, h, colorkey = self.atlas[name]

pyxel.blt(x, y, bank, u, v, w, h, colorkey)

SpriteAtlas()

This example demonstrates:

1. Creating a sprite atlas dictionary
2. Using the atlas to draw sprites by name
3. How this approach simplifies your drawing code

258

44.3 Working with Multiple Image Banks

44.3 Working with Multiple Image Banks

So far, we’ve primarily used the first image bank (0), but Pyxel gives you three image banks to work with.
This is useful for organizing different types of assets:

import pyxel

class MultipleImageBanks:

def __init__(self):

pyxel.init(160, 120, title="Multiple Image Banks")

In a real game, you'd load these from .pyxres files or create them

For this example, let's assume each bank already has specific content:

Bank 0: Character sprites

Bank 1: Environment tiles

Bank 2: UI elements

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw background tile from bank 1

pyxel.blt(20, 20, 1, 0, 0, 16, 16, 0)

Draw character from bank 0

pyxel.blt(20, 20, 0, 0, 0, 16, 16, 0)

Draw UI element from bank 2

pyxel.blt(100, 20, 2, 0, 0, 32, 16, 0)

Draw labels

pyxel.text(20, 40, "Tile + Character", 7)

pyxel.text(100, 40, "UI Element", 7)

Explain our organization

pyxel.text(10, 70, "Bank 0: Character sprites", 7)

pyxel.text(10, 80, "Bank 1: Environment tiles", 7)

pyxel.text(10, 90, "Bank 2: UI elements", 7)

259

44 Mastering the Image Bank: Organizing Your Game’s Visual Assets

MultipleImageBanks()

This example demonstrates:

1. Using all three image banks for different types of assets
2. How to specify which bank to use in the blt() function
3. A suggested organization scheme for the three banks

44.4 Practice Time: Image Bank Organization Quest

Now it’s your turn to practice organizing and working with the image bank. Complete these challenges:

1. Create a program that organizes sprites in the image bank using a grid system

2. Implement a sprite atlas to reference at least 4 different “sprites” by name

3. Demonstrate drawing those sprites on the screen

Here’s a starting point for your quest:

import pyxel

class MyImageBankOrganizer:

def __init__(self):

pyxel.init(160, 120, title="Image Bank Organizer")

Define your sprite positions in the image bank

One 16x16 player

Four 8x8 items

Create your sprite atlas dictionary

self.atlas = {

Your sprite definitions here

name: (bank, x, y, width, height, colorkey)

}

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

260

44.5 Common Bugs to Watch Out For

Draw your organized sprites

Your code here

def draw_sprite(self, name, x, y):

Draw a sprite from your atlas by name

Your code here

Create and start your organizer

MyImageBankOrganizer()

44.5 Common Bugs to Watch Out For

As you work with Pyxel’s image bank, watch out for these common issues:

1. Out of Bounds Access: The image bank is a 256x256 pixel area. If you try to access pixels outside
this range, you’ll get unexpected results or errors.

2. Overwriting Sprites: When copying or creating sprites, be careful not to accidentally overwrite
existing sprites. Keep track of which areas of the image bank you’re using.

3. Bank Confusion: When using multiple image banks, double-check which bank you’re accessing. It’s
easy to accidentally use bank 0 when you meant bank 1.

4. Colorkey Inconsistency: Make sure you’re consistent with your transparent color choice (colorkey)
across all your sprites.

5. Memory vs. Display: Remember thatmodifying the image bank changes the stored sprite, notwhat’s
currently displayed on the screen. You need to call blt() to see those changes.

6. Coordinate Systems: The image bank and screen use the same coordinate system (origin at top-left),
but don’t confuse image bank coordinates (u, v) with screen coordinates (x, y).

7. Resource Loading Order: If you’re loading a .pyxres file, make sure you do this before trying to
access or modify the image bank.

44.6 Conclusion and Resources for Further Exploration

You’ve now learned how to effectively organize and work with Pyxel’s image bank system. These skills will
help you create more complex games with many different visual elements, all neatly organized and easily
accessible.

To further enhance your image bank skills, check out these resources:

1. Pyxel GitHub Documentation - Official documentation on Pyxel’s image bank functions.

261

https://github.com/kitao/pyxel

44 Mastering the Image Bank: Organizing Your Game’s Visual Assets

2. Pyxel Resource File Format - Detailed information about Pyxel’s .pyxres file format.

3. Pyxel Editor Tutorial - Help with using the built-in editor for creating sprites.

4. Sprite Organization Techniques - General techniques for organizing sprite sheets.

In our next lesson, we’ll explore animations and flipping sprites to bring more life to your games. Keep
practicing with the image bank – a well-organized visual asset system will make your game development
process much more efficient and enjoyable!

262

https://github.com/kitao/pyxel/wiki/Resource-File-Format
https://github.com/kitao/pyxel/wiki
https://www.gamasutra.com/blogs/DariusKazemi/20120112/92294/Sprite_Sheet_Techniques_and_Organization.php

45 Bringing Your World to Life: Basic Sprite
Movement

In our previous lessons, we’ve explored the fundamentals of Pyxel, from drawing primitives to loading
sprites. Today, we take a major step toward making our games feel alive by learning how to move sprites
around the screen. Just as a puppeteer gives life to a puppet by making it move, we’ll give life to our virtual
worlds through controlled movement.

45.1 Why Movement Matters

Movement is what transforms static images into dynamic games. It creates:

1. Player Agency: Movement lets players interact with and affect the game world
2. Challenge: Moving obstacles and enemies create gameplay challenges
3. Visual Interest: Even simple movement patterns make a scene more engaging
4. Storytelling: Movement can convey character personality and narrative

Let’s start with the essential movement techniques that form the foundation of game development.

45.2 The Basic Movement Model

At its core, sprite movement in games follows a simple pattern:

1. Store the sprite’s position in variables
2. Update those variables based on inputs or logic
3. Draw the sprite at its new position each frame

Let’s implement this pattern with a simple moving square:

import pyxel

class BasicMovement:

def __init__(self):

pyxel.init(160, 120, title="Basic Movement")

1. Store position in variables

263

45 Bringing Your World to Life: Basic Sprite Movement

self.square_x = 80 # Start at the center of the screen

self.square_y = 60

self.square_size = 8

self.square_vel = 1

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

2. Update position variables

Move right by 1 pixel each frame

self.square_x = self.square_x + self.square_vel

Wrap around when reaching the right edge

if self.square_x > 160:

self.square_x = 0

If you wanted it to bounce back instead...

if self.square_x > 152:

self.square_vel = -self.square_vel

if self.square_x < 0:

self.square_vel = -self.square_vel

def draw(self):

pyxel.cls(1) # Clear the screen with dark blue

3. Draw the sprite at its new position

pyxel.rect(self.square_x, self.square_y,

self.square_size, self.square_size, 11) # Green square

Display information

pyxel.text(5, 5, "Basic Automatic Movement", 7)

pyxel.text(5, 15, "Square moves right and wraps around", 7)

BasicMovement()

When you run this code, you’ll see a green square steadily moving from left to right across the screen.
When it reaches the right edge, it wraps around to the left side and continues its journey.

264

45.3 Keyboard-Controlled Movement

45.3 Keyboard-Controlled Movement

Of course, games usually need to respond to player input. Let’s modify our example to move the square
using the keyboard arrow keys:

import pyxel

class KeyboardMovement:

def __init__(self):

pyxel.init(160, 120, title="Keyboard Movement")

Store position in variables

self.player_x = 80

self.player_y = 60

self.player_size = 8

self.player_speed = 2 # Pixels to move per frame

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update position based on keyboard input

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x = self.player_x - self.player_speed

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x = self.player_x + self.player_speed

if pyxel.btn(pyxel.KEY_UP):

self.player_y = self.player_y - self.player_speed

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y = self.player_y + self.player_speed

def draw(self):

pyxel.cls(1) # Clear the screen with dark blue

Draw the player at its new position

pyxel.rect(self.player_x, self.player_y,

self.player_size, self.player_size, 11)

Display instructions

265

45 Bringing Your World to Life: Basic Sprite Movement

pyxel.text(5, 5, "Use arrow keys to move", 7)

pyxel.text(5, 15, "Press Q to quit", 7)

KeyboardMovement()

This code creates a player-controlled square that responds to the arrow keys. Notice how we:

1. Added a player_speed variable to control how many pixels the player moves per frame
2. Use pyxel.btn() to check if arrow keys are being pressed
3. Update the player’s position based on which keys are pressed

45.4 Keeping Sprites Within Bounds

One common issue in games is keeping sprites from moving off-screen. Let’s modify our keyboard move-
ment example to constrain the player to the visible area:

import pyxel

class BoundedMovement:

def __init__(self):

pyxel.init(160, 120, title="Bounded Movement")

Store position and size

self.player_x = 80

self.player_y = 60

self.player_size = 16

self.player_speed = 2

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update position based on keyboard input

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x = self.player_x - self.player_speed

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x = self.player_x + self.player_speed

if pyxel.btn(pyxel.KEY_UP):

self.player_y = self.player_y - self.player_speed

266

45.4 Keeping Sprites Within Bounds

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y = self.player_y + self.player_speed

Keep the player within the screen bounds

Left boundary

if self.player_x < 0:

self.player_x = 0

Right boundary (account for player width)

if self.player_x > 160 - self.player_size:

self.player_x = 160 - self.player_size

Top boundary

if self.player_y < 0:

self.player_y = 0

Bottom boundary (account for player height)

if self.player_y > 120 - self.player_size:

self.player_y = 120 - self.player_size

def draw(self):

pyxel.cls(1) # Clear the screen with dark blue

Draw the screen boundaries

pyxel.rectb(0, 0, 160, 120, 7)

Draw the player

pyxel.rect(self.player_x, self.player_y,

self.player_size, self.player_size, 11)

Display instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

pyxel.text(5, 15, "Player stays within bounds", 7)

BoundedMovement()

This code adds boundary checking after updating the player’s position. We check all four edges of the
screen and adjust the player’s position if they try to move beyond them. Notice how we account for the
player’s size when checking the right and bottom boundaries.

267

45 Bringing Your World to Life: Basic Sprite Movement

45.5 Movement with Acceleration and Deceleration

Real-world objects don’t start and stop instantly—they accelerate and decelerate. We can simulate this in
our games for more natural-feeling movement:

import pyxel

class SmoothMovement:

def __init__(self):

pyxel.init(160, 120, title="Smooth Movement")

Position and size

self.player_x = 80

self.player_y = 60

self.player_size = 8

Velocity (pixels per frame)

self.velocity_x = 0

self.velocity_y = 0

Physics constants

self.acceleration = 0.2

self.friction = 0.9 # Acts as deceleration (must be < 1.0)

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Apply acceleration based on keyboard input

if pyxel.btn(pyxel.KEY_LEFT):

self.velocity_x = self.velocity_x - self.acceleration

if pyxel.btn(pyxel.KEY_RIGHT):

self.velocity_x = self.velocity_x + self.acceleration

if pyxel.btn(pyxel.KEY_UP):

self.velocity_y = self.velocity_y - self.acceleration

if pyxel.btn(pyxel.KEY_DOWN):

self.velocity_y = self.velocity_y + self.acceleration

Apply friction to slow down when no keys are pressed

268

45.5 Movement with Acceleration and Deceleration

self.velocity_x = self.velocity_x * self.friction

self.velocity_y = self.velocity_y * self.friction

Update position based on velocity

self.player_x = self.player_x + self.velocity_x

self.player_y = self.player_y + self.velocity_y

Keep player within bounds

if self.player_x < 0:

self.player_x = 0

self.velocity_x = 0 # Stop horizontal movement

if self.player_x > 160 - self.player_size:

self.player_x = 160 - self.player_size

self.velocity_x = 0

if self.player_y < 0:

self.player_y = 0

self.velocity_y = 0 # Stop vertical movement

if self.player_y > 120 - self.player_size:

self.player_y = 120 - self.player_size

self.velocity_y = 0

def draw(self):

pyxel.cls(1) # Clear the screen with dark blue

Draw the player

pyxel.rect(self.player_x, self.player_y,

self.player_size, self.player_size, 11)

Draw velocity information

pyxel.text(5, 5, f"Velocity X: {self.velocity_x:.2f}", 7)

pyxel.text(5, 15, f"Velocity Y: {self.velocity_y:.2f}", 7)

pyxel.text(5, 30, "Use arrow keys to move", 7)

pyxel.text(5, 40, "Notice the smooth acceleration", 7)

SmoothMovement()

This code introduces a physics-based movement system with:

1. Velocity: We track how fast the player is moving in both X and Y directions
2. Acceleration: We increase velocity gradually when keys are pressed
3. Friction: We decrease velocity over time to simulate natural slowing down

269

45 Bringing Your World to Life: Basic Sprite Movement

The result is movement that feels much more natural, with the player gradually speeding up when keys are
pressed and slowing down when released.

45.6 Moving Multiple Sprites: Following Patterns

Games often need to move multiple sprites at once, each with its own behavior. Let’s create a simple
example with multiple moving objects:

import pyxel

class MultipleSprites:

def __init__(self):

pyxel.init(160, 120, title="Multiple Moving Sprites")

Player sprite

self.player_x = 80

self.player_y = 60

self.player_size = 8

self.player_speed = 2

Enemy sprites (x, y, direction_x, direction_y)

self.enemies = [

[20, 20, 1, 0.5], # Right and down

[140, 20, -1, 0.5], # Left and down

[20, 100, 1, -0.5], # Right and up

[140, 100, -1, -0.5] # Left and up

]

self.enemy_size = 8

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update player position

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x = self.player_x - self.player_speed

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x = self.player_x + self.player_speed

if pyxel.btn(pyxel.KEY_UP):

270

45.6 Moving Multiple Sprites: Following Patterns

self.player_y = self.player_y - self.player_speed

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y = self.player_y + self.player_speed

Keep player within bounds

self.player_x = max(0, min(self.player_x, 160 - self.player_size))

self.player_y = max(0, min(self.player_y, 120 - self.player_size))

Update each enemy

for i in range(4): # We have 4 enemies

Move enemy

self.enemies[i][0] = self.enemies[i][0] + self.enemies[i][2]

self.enemies[i][1] = self.enemies[i][1] + self.enemies[i][3]

Bounce off walls

if self.enemies[i][0] < 0 or self.enemies[i][0] > 160 - self.enemy_size:

self.enemies[i][2] = -self.enemies[i][2] # Reverse x direction

if self.enemies[i][1] < 0 or self.enemies[i][1] > 120 - self.enemy_size:

self.enemies[i][3] = -self.enemies[i][3] # Reverse y direction

def draw(self):

pyxel.cls(1) # Clear the screen with dark blue

Draw the player (green)

pyxel.rect(self.player_x, self.player_y,

self.player_size, self.player_size, 11)

Draw the enemies (red)

for i in range(4):

pyxel.rect(self.enemies[i][0], self.enemies[i][1],

self.enemy_size, self.enemy_size, 8)

Display instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

pyxel.text(5, 15, "Avoid the red enemies", 7)

MultipleSprites()

This example introduces multiple independently moving objects:

1. A player-controlled green square
2. Four red enemy squares that move in different directions

271

45 Bringing Your World to Life: Basic Sprite Movement

3. Collision detection with the walls that causes enemies to bounce

Notice how we store each enemy’s data in a list within a list. Each enemy entry contains:

• X position
• Y position
• X direction (positive for right, negative for left)
• Y direction (positive for down, negative for up)

When an enemy hits a wall, we reverse its direction by multiplying it by -1.

45.7 Using blt() Instead of Shapes

So far, we’ve been using rectangles for our sprites, but in a real game, you’ll typically use actual sprite
images. Let’s modify our code to use the blt() function for drawing sprites:

import pyxel

class SpriteMovement:

def __init__(self):

pyxel.init(160, 120, title="Sprite Movement")

For this example, we'll assume there's a character sprite at position (0,0)

and an enemy sprite at position (8,0) in image bank 0

Player sprite

self.player_x = 80

self.player_y = 60

self.player_speed = 2

Enemy sprite

self.enemy_x = 40

self.enemy_y = 30

self.enemy_dir_x = 1

self.enemy_dir_y = 1

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update player position

if pyxel.btn(pyxel.KEY_LEFT):

272

45.7 Using blt() Instead of Shapes

self.player_x = self.player_x - self.player_speed

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x = self.player_x + self.player_speed

if pyxel.btn(pyxel.KEY_UP):

self.player_y = self.player_y - self.player_speed

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y = self.player_y + self.player_speed

Keep player within bounds

self.player_x = max(0, min(self.player_x, 160 - 8))

self.player_y = max(0, min(self.player_y, 120 - 8))

Update enemy position

self.enemy_x = self.enemy_x + self.enemy_dir_x

self.enemy_y = self.enemy_y + self.enemy_dir_y

Bounce enemy off walls

if self.enemy_x < 0 or self.enemy_x > 160 - 8:

self.enemy_dir_x = -self.enemy_dir_x

if self.enemy_y < 0 or self.enemy_y > 120 - 8:

self.enemy_dir_y = -self.enemy_dir_y

def draw(self):

pyxel.cls(1) # Clear the screen with dark blue

Draw the player sprite

Parameters: x, y, img, u, v, w, h, colkey

pyxel.blt(self.player_x, self.player_y, 0, 0, 0, 8, 8, 0)

Draw the enemy sprite

pyxel.blt(self.enemy_x, self.enemy_y, 0, 8, 0, 8, 8, 0)

Display instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

SpriteMovement()

This code uses the blt() function to draw the player and enemy sprites from the image bank instead of
using rectangles. We assume there are 8x8 sprites at positions (0,0) and (8,0) in image bank 0.

273

45 Bringing Your World to Life: Basic Sprite Movement

45.8 Creating a Simple Game: Collect the Coins

Let’s put everything together to create a simple game where the player moves around collecting coins:

import pyxel

class CoinCollectorGame:

def __init__(self):

pyxel.init(160, 120, title="Coin Collector")

Player properties

self.player_x = 80

self.player_y = 60

self.player_speed = 2

Coins - list of [x, y, active]

self.coins = [

[20, 20, True],

[60, 30, True],

[100, 40, True],

[140, 50, True],

[30, 80, True],

[70, 90, True],

[110, 100, True],

]

Game state

self.score = 0

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update player position

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x = self.player_x - self.player_speed

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x = self.player_x + self.player_speed

if pyxel.btn(pyxel.KEY_UP):

self.player_y = self.player_y - self.player_speed

274

45.8 Creating a Simple Game: Collect the Coins

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y = self.player_y + self.player_speed

Keep player within bounds

self.player_x = max(0, min(self.player_x, 160 - 8))

self.player_y = max(0, min(self.player_y, 120 - 8))

Check for coin collection

for i in range(len(self.coins)):

if self.coins[i][2]: # If coin is active

Check for collision (simple rectangle collision)

if (self.player_x < self.coins[i][0] + 8 and

self.player_x + 8 > self.coins[i][0] and

self.player_y < self.coins[i][1] + 8 and

self.player_y + 8 > self.coins[i][1]):

Collect coin

self.coins[i][2] = False

self.score += 10

def draw(self):

pyxel.cls(1) # Clear the screen with dark blue

Draw the player (green rectangle for simplicity)

pyxel.rect(self.player_x, self.player_y, 8, 8, 11)

Draw active coins (yellow circles)

for coin_x, coin_y, active in self.coins:

if active:

pyxel.circ(coin_x + 4, coin_y + 4, 4, 10) # +4 for center offset

Draw score

pyxel.text(5, 5, f"SCORE: {self.score}", 7)

Display instructions

pyxel.text(5, 110, "Use arrow keys to collect coins", 7)

CoinCollectorGame()

This simple game demonstrates:

1. Player movement with keyboard controls
2. Static objects (coins) placed around the screen
3. Collision detection to collect coins
4. Score tracking

275

45 Bringing Your World to Life: Basic Sprite Movement

5. Game state management (active/inactive coins)

45.9 Practice Time: Your Movement Quest

Now it’s your turn to create a moving sprite application. Try these challenges:

1. Create a game with a player-controlled sprite that moves with the arrow keys

2. Add at least one independently moving enemy sprite that follows a pattern

3. Implement boundary checking to keep sprites on screen

Here’s a starting point for your quest:

import pyxel

class MyMovementGame:

def __init__(self):

pyxel.init(160, 120, title="My Movement Game")

Set up your player variables

self.player_x = 80

self.player_y = 60

self.player_speed = 2

Set up your enemy variables

Your code here

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update player position based on keyboard input

Your code here

Update enemy position

Your code here

Keep sprites within screen boundaries

Your code here

def draw(self):

pyxel.cls(1) # Clear the screen with dark blue

276

45.10 Common Bugs to Watch Out For

Draw your player sprite

Your code here

Draw your enemy sprite

Your code here

Draw instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

Create and start your game

MyMovementGame()

45.10 Common Bugs to Watch Out For

As you experiment with sprite movement, watch out for these common issues:

1. Forgetting Boundaries: Without boundary checks, sprites easily move off-screen and become un-
controllable. Always implement boundary checks.

2. JerkyMovement: If movement feels jerky, check that you’re using btn() (continuous) for movement
rather than btnp() (single press).

3. Inconsistent Speed: Movement speed can vary based on frame rate. For consistent speed, consider
frame-rate independent movement (we’ll cover this in a future lesson).

4. Z-Order Issues: Sprites drawn later appear on top. If your player disappears behind other elements,
check your drawing order.

5. Off-by-One Errors: When calculating boundaries, remember to account for sprite width and height.
The right boundary isn’t at x=160, but at x=160-sprite_width.

6. Direction Confusion: Remember that in Pyxel’s coordinate system, increasing Y moves down and
increasing X moves right. Mixing these up leads to reversed controls.

7. Collision Detection Timing: Check for collisions after updating positions, not before, or you’ll
detect collisions with the previous frame’s positions.

45.11 Conclusion and Resources for Further Exploration

You’ve now learned the fundamentals of sprite movement in Pyxel. These techniques form the foundation
of virtually every 2D game, from simple arcade games to complex platformers.

To further enhance your movement programming skills, check out these resources:

277

45 Bringing Your World to Life: Basic Sprite Movement

1. Game Programming Patterns - A free online bookwith excellent chapters on game loops and update
methods.

2. 2D Game Movement Fundamentals - A deeper look at 2D movement techniques.

3. The Nature of Code - A fantastic resource for understanding physics-based movement.

4. Game Feel: A Game Designer’s Guide to Virtual Sensation - A book on making movement feel
good.

In our next lesson, we’ll explore more advanced movement techniques, including path following, chasing
behaviors, and platformer physics. Keep experimenting with the basics – mastering these fundamentals
will prepare you for more complex movement systems in the future!

278

https://gameprogrammingpatterns.com/
https://www.gamasutra.com/blogs/JoshSutphin/20130406/189669/2D_Game_Movement_Fundamentals.php
https://natureofcode.com/book/chapter-1-vectors/
https://www.amazon.com/Game-Feel-Designers-Sensation-Kaufmann/dp/0123743281

46 Mastering Player Input: Keyboard, Mouse,
and Gamepad

In our previous lessons, we explored the foundations of game development with Pyxel, including loading
sprites and creating movement. Today, we’re diving into the critical topic of player input - the bridge
between your players and the virtual worlds you create. We’ll explore how to capture and respond to
keyboard presses, mouse movements, and even gamepad controls!

46.1 Why Input Matters: The Player’s Connection

Input is how players communicate their intentions to your game. Well-designed input systems create a
feeling of responsiveness and control that’s essential for an enjoyable gaming experience. Think about
it - even the most beautiful game with the most engaging story will fail if the controls feel clunky or
unresponsive.

Let’s explore the three main types of input available in Pyxel:

46.2 Keyboard Input: The Classic Control Scheme

The keyboard is the most common input device for PC games, offering many keys for different actions.
Pyxel provides two primary functions for detecting key presses:

46.2.1 btn() vs btnp(): Understanding the Difference

Pyxel offers two main functions for keyboard input:

1. pyxel.btn(key): Returns True as long as the specified key is being held down

• Perfect for continuous actions like movement
• Example: Moving a character while an arrow key is held

2. pyxel.btnp(key): Returns True only on the first frame when a key is pressed

• Perfect for one-time actions like jumping, shooting, or menu selection
• Example: Firing a weapon when the spacebar is pressed

279

46 Mastering Player Input: Keyboard, Mouse, and Gamepad

Let’s see both in action:

import pyxel

class KeyboardDemo:

def __init__(self):

pyxel.init(160, 120, title="Keyboard Input Demo")

self.x = 80 # X position

self.y = 60 # Y position

self.color = 7 # White

pyxel.run(self.update, self.draw)

def update(self):

Continuous movement with btn()

if pyxel.btn(pyxel.KEY_LEFT):

self.x = max(self.x - 2, 0)

if pyxel.btn(pyxel.KEY_RIGHT):

self.x = min(self.x + 2, 160)

if pyxel.btn(pyxel.KEY_UP):

self.y = max(self.y - 2, 0)

if pyxel.btn(pyxel.KEY_DOWN):

self.y = min(self.y + 2, 120)

One-time actions with btnp()

if pyxel.btnp(pyxel.KEY_SPACE):

Change color when spacebar is pressed

self.color = (self.color + 1) % 16

Quit the game

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw a square that moves with arrow keys

pyxel.rect(self.x - 4, self.y - 4, 8, 8, self.color)

Display instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

pyxel.text(5, 15, "Press SPACE to change color", 7)

pyxel.text(5, 25, "Press Q to quit", 7)

280

46.2 Keyboard Input: The Classic Control Scheme

Show status

pyxel.text(5, 100, f"Position: ({self.x}, {self.y})", 7)

pyxel.text(5, 110, f"Color: {self.color}", 7)

KeyboardDemo()

When you run this code, you’ll be able to move a square around the screen with the arrow keys (using btn()
for continuous movement) and change its color with the space bar (using btnp() for a one-time action).

46.2.2 Key Constants: The Magic Words

Pyxel provides constants for all the keys you might want to use:

• Direction keys: pyxel.KEY_UP, pyxel.KEY_DOWN, pyxel.KEY_LEFT, pyxel.KEY_RIGHT
• Letter keys: pyxel.KEY_A through pyxel.KEY_Z

• Number keys: pyxel.KEY_0 through pyxel.KEY_9

• Special keys: pyxel.KEY_SPACE, pyxel.KEY_RETURN, pyxel.KEY_ESCAPE, etc.

You can find the full list in the Pyxel documentation.

46.2.3 Advanced Keyboard Techniques

46.2.3.1 Detecting Multiple Keys

Pyxel can handle multiple key presses simultaneously. This allows for diagonal movement and combined
actions:

Diagonal movement

if pyxel.btn(pyxel.KEY_UP) and pyxel.btn(pyxel.KEY_RIGHT):

Move diagonally up and right

self.y = max(self.y - 1, 0)

self.x = min(self.x + 1, 160)

46.2.3.2 Input Buffering

For games requiring precise timing, you might want to implement input buffering - accepting input
slightly before an action is possible:

281

46 Mastering Player Input: Keyboard, Mouse, and Gamepad

Simple input buffer for a jump

if pyxel.btnp(pyxel.KEY_SPACE):

self.jump_buffer = 10 # Allow jump within 10 frames

Later in the update

if self.jump_buffer > 0:

if self.on_ground: # If character is on ground

self.do_jump() # Execute the jump

self.jump_buffer = 0 # Reset buffer

else:

self.jump_buffer -= 1 # Decrease buffer timer

46.3 Mouse Input: Point and Click Adventures

Mouse input provides an intuitiveway for players to interact with your game, especially formenus, strategy
games, or point-and-click adventures.

46.3.1 Enabling Mouse Input

Before using the mouse, you need to enable it:

pyxel.mouse(True) # Enable mouse

46.3.2 Reading Mouse Position and Clicks

Pyxel makes it easy to get the mouse position and detect clicks:

Get mouse position

mouse_x = pyxel.mouse_x

mouse_y = pyxel.mouse_y

Detect mouse clicks

left_click = pyxel.btn(pyxel.MOUSE_BUTTON_LEFT)

right_click = pyxel.btn(pyxel.MOUSE_BUTTON_RIGHT)

middle_click = pyxel.btn(pyxel.MOUSE_BUTTON_MIDDLE)

For single clicks (not held down)

left_click_once = pyxel.btnp(pyxel.MOUSE_BUTTON_LEFT)

Let’s create a simple drawing application to demonstrate mouse input:

282

46.3 Mouse Input: Point and Click Adventures

import pyxel

class MouseDemo:

def __init__(self):

pyxel.init(160, 120, title="Mouse Input Demo")

pyxel.mouse(True) # Enable mouse cursor

self.canvas_color = 1 # Dark blue

self.drawing_color = 7 # White

self.drawing = False

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Start drawing when left mouse button is pressed

if pyxel.btn(pyxel.MOUSE_BUTTON_LEFT):

self.drawing = True

Draw a pixel at the mouse position

pyxel.pset(pyxel.mouse_x, pyxel.mouse_y, self.drawing_color)

else:

self.drawing = False

Change drawing color with right mouse button

if pyxel.btnp(pyxel.MOUSE_BUTTON_RIGHT):

self.drawing_color = (self.drawing_color + 1) % 16

def draw(self):

Canvas has already been modified in update with pyxel.pset

Draw UI

pyxel.rectb(0, 0, 160, 120, 5) # Border

Display instructions

pyxel.text(5, 5, "Left click to draw", 7)

pyxel.text(5, 15, "Right click to change color", 7)

pyxel.text(5, 25, "Press Q to quit", 7)

Show current color

pyxel.rect(130, 5, 15, 15, self.drawing_color)

pyxel.rectb(130, 5, 15, 15, 7)

283

46 Mastering Player Input: Keyboard, Mouse, and Gamepad

Show mouse coordinates

pyxel.text(5, 105, f"Mouse: ({pyxel.mouse_x}, {pyxel.mouse_y})", 7)

MouseDemo()

This creates a simple drawing application where you can draw with the left mouse button and change
colors with the right mouse button.

46.3.3 Button Detection: Clicking on UI Elements

Let’s create a simple button class to demonstrate how to detect when the mouse is over a UI element:

import pyxel

class Button:

def __init__(self, x, y, width, height, text, color):

self.x = x

self.y = y

self.width = width

self.height = height

self.text = text

self.color = color

self.hover = False

def update(self):

Check if mouse is over the button

mouse_over = (self.x <= pyxel.mouse_x <= self.x + self.width and

self.y <= pyxel.mouse_y <= self.y + self.height)

self.hover = mouse_over

Return True if clicked

return mouse_over and pyxel.btnp(pyxel.MOUSE_BUTTON_LEFT)

def draw(self):

Draw button with different color when hovering

if self.hover:

button_color = self.color + 1

else:

button_color = self.color

pyxel.rect(self.x, self.y, self.width, self.height, button_color)

pyxel.rectb(self.x, self.y, self.width, self.height, 7)

Center text

284

46.3 Mouse Input: Point and Click Adventures

text_x = self.x + (self.width - len(self.text) * 4) // 2

text_y = self.y + (self.height - 5) // 2

pyxel.text(text_x, text_y, self.text, 0)

class UIDemo:

def __init__(self):

pyxel.init(160, 120, title="Button UI Demo")

pyxel.mouse(True) # Enable mouse cursor

Create some buttons

self.buttons = [

Button(30, 30, 40, 15, "Red", 8),

Button(30, 50, 40, 15, "Green", 11),

Button(30, 70, 40, 15, "Blue", 12)

]

self.background_color = 1

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update buttons and check for clicks

if self.buttons[0].update(): # Red button

self.background_color = 8

if self.buttons[1].update(): # Green button

self.background_color = 11

if self.buttons[2].update(): # Blue button

self.background_color = 12

def draw(self):

pyxel.cls(self.background_color)

Draw buttons

for button in self.buttons:

button.draw()

Display instructions

pyxel.text(5, 5, "Click a button to change background", 7)

pyxel.text(5, 105, "Press Q to quit", 7)

285

46 Mastering Player Input: Keyboard, Mouse, and Gamepad

UIDemo()

This demonstrates a more complex use of mouse input for UI interaction, with buttons that respond to
hovering and clicking.

46.4 Gamepad Input: The Console Experience

For a truly authentic retro gaming experience, Pyxel supports gamepads, including classic SNES con-
trollers through adapters. The input functions work just like keyboard input!

46.4.1 Reading Gamepad Buttons

Pyxel uses the same btn() and btnp() functions for gamepad input, just with different constants:

Check if A button is pressed on gamepad 1

if pyxel.btn(pyxel.GAMEPAD1_BUTTON_A):

player_jump()

Check if Direction Pad Right is held on gamepad 1

if pyxel.btn(pyxel.GAMEPAD1_BUTTON_DPAD_RIGHT):

move_player_right()

For single presses (not held down)

if pyxel.btnp(pyxel.GAMEPAD1_BUTTON_START):

pause_game()

46.4.2 Gamepad Constants

Pyxel provides constants for standard gamepad buttons:

• D-Pad: pyxel.GAMEPAD1_BUTTON_DPAD_UP, pyxel.GAMEPAD1_BUTTON_DPAD_DOWN, etc.
• Action buttons: pyxel.GAMEPAD1_BUTTON_A, pyxel.GAMEPAD1_BUTTON_B, etc.
• Shoulder buttons: pyxel.GAMEPAD1_BUTTON_SHOULDER_L, pyxel.GAMEPAD1_BUTTON_SHOULDER_R
• Menu buttons: pyxel.GAMEPAD1_BUTTON_START, pyxel.GAMEPAD1_BUTTON_SELECT

Pyxel supports up to 8 controllers by changing the number in the constant (e.g., GAMEPAD2_BUTTON_A for
the second controller).

286

46.4 Gamepad Input: The Console Experience

46.4.3 Two-Player Example

Let’s create a simple two-player movement demo using both keyboard and gamepad inputs:

import pyxel

class TwoPlayerDemo:

def __init__(self):

pyxel.init(160, 120, title="Two-Player Demo")

Player 1 (keyboard)

self.p1_x = 40

self.p1_y = 60

self.p1_color = 8 # Red

Player 2 (gamepad)

self.p2_x = 120

self.p2_y = 60

self.p2_color = 12 # Blue

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update Player 1 (keyboard)

#

Note that `min` and `max` compare a series of numbers. Their use

here prevents the player from moving beyond the screen edge

if pyxel.btn(pyxel.KEY_LEFT):

self.p1_x = max(self.p1_x - 2, 0)

if pyxel.btn(pyxel.KEY_RIGHT):

self.p1_x = min(self.p1_x + 2, 160)

if pyxel.btn(pyxel.KEY_UP):

self.p1_y = max(self.p1_y - 2, 0)

if pyxel.btn(pyxel.KEY_DOWN):

self.p1_y = min(self.p1_y + 2, 120)

Update Player 2 (gamepad)

if pyxel.btn(pyxel.GAMEPAD1_BUTTON_DPAD_LEFT):

self.p2_x = max(self.p2_x - 2, 0)

287

46 Mastering Player Input: Keyboard, Mouse, and Gamepad

if pyxel.btn(pyxel.GAMEPAD1_BUTTON_DPAD_RIGHT):

self.p2_x = min(self.p2_x + 2, 160)

if pyxel.btn(pyxel.GAMEPAD1_BUTTON_DPAD_UP):

self.p2_y = max(self.p2_y - 2, 0)

if pyxel.btn(pyxel.GAMEPAD1_BUTTON_DPAD_DOWN):

self.p2_y = min(self.p2_y + 2, 120)

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw Player 1

pyxel.rect(self.p1_x - 4, self.p1_y - 4, 8, 8, self.p1_color)

pyxel.text(self.p1_x - 2, self.p1_y - 2, "1", 7)

Draw Player 2

pyxel.rect(self.p2_x - 4, self.p2_y - 4, 8, 8, self.p2_color)

pyxel.text(self.p2_x - 2, self.p2_y - 2, "2", 7)

Display instructions

pyxel.text(5, 5, "Player 1: Arrow Keys", 8)

pyxel.text(85, 5, "Player 2: Gamepad", 12)

pyxel.text(5, 105, "Press Q to quit", 7)

TwoPlayerDemo()

This example allows two players to control separate characters - one using the keyboard and the other
using a gamepad.

This example allows the player to use either keyboard or gamepad interchangeably, providing flexibility
in control options.

46.5 Practice Time: Your Input Control Quest

Now it’s your turn to create a Pyxel application using different types of input. Try these challenges:

1. Create a program that displays different shapes based on which key is pressed (e.g., ‘C’ for circle, ‘R’
for rectangle)

2. Make a simple menu system that can be navigated with either keyboard arrow keys or mouse clicks

3. Create a drawing application that uses different colors based on which mouse button is pressed

288

46.6 Common Bugs to Watch Out For

Here’s a starting point for your quest:

import pyxel

class MyInputDemo:

def __init__(self):

pyxel.init(160, 120, title="My Input Demo")

pyxel.mouse(True) # Enable mouse

Initialize your variables here

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Handle various input methods

Your code here

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw your visuals based on input

Your code here

Display instructions

pyxel.text(5, 5, "Your instructions here", 7)

Create and start your demo

MyInputDemo()

46.6 Common Bugs to Watch Out For

As you experiment with different input methods in Pyxel, watch out for these common issues:

1. Forgetting to Enable Mouse: If your mouse input isn’t working, make sure you’ve called
pyxel.mouse(True) to enable the mouse cursor.

2. Using btnp() for Movement: Using btnp() for movement will result in jerky, step-by-step motion.
Use btn() for continuous actions like movement.

3. Input Conflicts: When allowing multiple input methods, be careful about conflicting controls. For
example, if the up arrow controls a character but also navigates a menu, you might need to track
game states.

289

46 Mastering Player Input: Keyboard, Mouse, and Gamepad

4. Missing Input Frames: Pyxel runs at a fixed frame rate. If your game logic is complex, you might
miss some input frames. Consider using input buffers for critical actions.

5. Boundary Checking: Always include boundary checks when moving objects based on input to pre-
vent them from moving off-screen.

6. Gamepad Connectivity: If gamepad input isn’t working, make sure your controller is properly
connected and recognized by your operating system before starting Pyxel.

7. Key Repeat Rates: Operating system key repeat settings may affect how btn() behaves for held keys.
This is usually not a problem but something to be aware of.

46.7 Conclusion and Resources for Further Exploration

You’ve now learned how to capture and respond to keyboard, mouse, and gamepad input in your Pyxel
games. These skills form the foundation of player interaction, allowing you to create responsive and en-
gaging game experiences.

To further enhance your input handling skills, check out these resources:

1. Pyxel GitHub Documentation - Official documentation for all Pyxel functions, including detailed
input handling.

2. Game Feel: A Game Designer’s Guide to Virtual Sensation - An excellent book on creating respon-
sive controls in games.

3. Input Buffering in Games - A deeper exploration of advanced input techniques.

4. UI Design for Game Developers - Great resource for designing interfaces that respond to player
input.

In our next lesson, we’ll explore animations and flipping sprites to bring even more life to your games.
Keep practicing with different input methods – responsive controls are the key to creating games that feel
satisfying to play!

290

https://github.com/kitao/pyxel
https://www.amazon.com/Game-Feel-Designers-Sensation-Kaufmann/dp/0123743281
https://commoncore.io/input-buffering
https://www.gamasutra.com/view/feature/131994/user_interface_design_for_games.php

47 The Art of Collision Detection: Making Your
Game Interactive

Today, we take a crucial step toward making our games truly interactive by mastering collision detection.
Just as in a medieval tournament where knights must determine whether lances struck shields, our game
needs to know when objects touch each other.

47.1 What is Collision Detection and Why Does It Matter?

Collision detection is the process of determining when two or more objects in your game occupy the same
space. This fundamental concept enables virtually all game interactions:

• Players collecting coins or power-ups
• Enemies damaging the player character
• Projectiles hitting targets
• Characters landing on platforms
• Preventing movement through walls and obstacles

Without collision detection, you’d have beautiful sprites moving through an unresponsive world where
nothing interacts. With it, your virtual world comes alive with cause and effect.

47.2 Types of Collision Detection

In 2D games, there are several common approaches to collision detection, each with different levels of
complexity and precision:

1. Rectangle (AABB) Collision: Checking if rectangles overlap (simplest and most common)
2. Circle Collision: Checking if circles overlap (good for round objects)
3. Pixel-Perfect Collision: Checking at the pixel level (most precise but computationally expensive)
4. Line/Ray Casting: Using rays to detect collisions at a distance (useful for vision and projectiles)

Today, we’ll focus on the two most practical methods for Pyxel games: rectangle and circle collision detec-
tion.

291

47 The Art of Collision Detection: Making Your Game Interactive

47.3 Rectangle Collision: The Workhorse of Game Development

Rectangle collision detection (also called Axis-Aligned Bounding Box or AABB collision) is simple, effi-
cient, and works well for most game objects. The idea is to treat each sprite as a rectangle and check if
these rectangles overlap.

For two rectangles to overlap, all of these conditions must be true:

• The right edge of rectangle A is to the right of the left edge of rectangle B
• The left edge of rectangle A is to the left of the right edge of rectangle B
• The bottom edge of rectangle A is below the top edge of rectangle B
• The top edge of rectangle A is above the bottom edge of rectangle B

Let’s implement this in code:

def check_rectangle_collision(x1, y1, w1, h1, x2, y2, w2, h2):

"""

Check if two rectangles overlap.

(x1, y1): Top-left corner of the first rectangle

w1, h1: Width and height of the first rectangle

(x2, y2): Top-left corner of the second rectangle

w2, h2: Width and height of the second rectangle

"""

Check if rectangles overlap on x-axis

if x1 + w1 <= x2 or x1 >= x2 + w2:

return False

Check if rectangles overlap on y-axis

if y1 + h1 <= y2 or y1 >= y2 + h2:

return False

If we get here, the rectangles must overlap

return True

Let’s see this in action with a simple example where we check if a player character collides with a coin:

import pyxel

class CollisionDemo:

def __init__(self):

pyxel.init(160, 120, title="Rectangle Collision Demo")

Player properties

self.player_x = 40

292

47.3 Rectangle Collision: The Workhorse of Game Development

self.player_y = 60

self.player_width = 16

self.player_height = 16

self.player_speed = 2

Coin properties

self.coin_x = 100

self.coin_y = 60

self.coin_width = 8

self.coin_height = 8

self.coin_active = True

Score

self.score = 0

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Move player with arrow keys

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x = max(self.player_x - self.player_speed, 0)

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x = min(self.player_x + self.player_speed, 160 - self.player_width)

if pyxel.btn(pyxel.KEY_UP):

self.player_y = max(self.player_y - self.player_speed, 0)

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y = min(self.player_y + self.player_speed, 120 - self.player_height)

Check collision between player and coin

if self.coin_active and self.check_collision(

self.player_x, self.player_y, self.player_width, self.player_height,

self.coin_x, self.coin_y, self.coin_width, self.coin_height

):

Collision detected!

self.coin_active = False

self.score += 10

def check_collision(self, x1, y1, w1, h1, x2, y2, w2, h2):

Check for collision between two rectangles

if x1 + w1 <= x2 or x1 >= x2 + w2:

if right edge of A left of left edge of B OR left edge is right of right edge of B

293

47 The Art of Collision Detection: Making Your Game Interactive

return False

if y1 + h1 <= y2 or y1 >= y2 + h2:

if bottom edge of A is above top edge of B OR top edge of A is below bottom edge of B

return False

return True

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw player (green rectangle)

pyxel.rect(self.player_x, self.player_y,

self.player_width, self.player_height, 11)

Draw coin (yellow circle) if active

if self.coin_active:

pyxel.circ(self.coin_x + 4, self.coin_y + 4, 4, 10)

Draw score

pyxel.text(5, 5, f"SCORE: {self.score}", 7)

Draw instructions

pyxel.text(5, 15, "Use arrow keys to move", 7)

pyxel.text(5, 25, "Collect the coin by touching it", 7)

CollisionDemo()

In this example:

1. We have a player rectangle (green) and a coin (yellow circle)
2. We check for collision between them using rectangle collision detection
3. When a collision occurs, we mark the coin as inactive and increase the score

Although the coin is drawn as a circle, we’re treating it as a rectangle for collision purposes. This simplified
approach works well for many games.

47.4 Visualizing Collision Rectangles

When developing collision detection, it’s often helpful to visualize the collision rectangles. Let’s modify
our example to show these rectangles:

import pyxel

class CollisionVisualizationDemo:

294

47.4 Visualizing Collision Rectangles

def __init__(self):

pyxel.init(160, 120, title="Collision Visualization")

Player properties

self.player_x = 40

self.player_y = 60

self.player_width = 16

self.player_height = 16

self.player_speed = 2

Coin properties

self.coin_x = 100

self.coin_y = 60

self.coin_width = 8

self.coin_height = 8

self.coin_active = True

Visualization option

self.show_collision_boxes = True

Score

self.score = 0

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Toggle collision box visualization with T key

if pyxel.btnp(pyxel.KEY_T):

self.show_collision_boxes = not self.show_collision_boxes

Move player with arrow keys

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x = max(self.player_x - self.player_speed, 0)

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x = min(self.player_x + self.player_speed, 160 - self.player_width)

if pyxel.btn(pyxel.KEY_UP):

self.player_y = max(self.player_y - self.player_speed, 0)

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y = min(self.player_y + self.player_speed, 120 - self.player_height)

Check collision between player and coin

295

47 The Art of Collision Detection: Making Your Game Interactive

if self.coin_active and self.check_collision(

self.player_x, self.player_y, self.player_width, self.player_height,

self.coin_x, self.coin_y, self.coin_width, self.coin_height

):

Collision detected!

self.coin_active = False

self.score += 10

Reset coin if collected

if not self.coin_active and pyxel.btnp(pyxel.KEY_R):

self.coin_active = True

def check_collision(self, x1, y1, w1, h1, x2, y2, w2, h2):

Check for collision between two rectangles

if x1 + w1 <= x2 or x1 >= x2 + w2:

return False

if y1 + h1 <= y2 or y1 >= y2 + h2:

return False

return True

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw player

pyxel.rect(self.player_x, self.player_y,

self.player_width, self.player_height, 11)

Draw coin if active

if self.coin_active:

pyxel.circ(self.coin_x + 4, self.coin_y + 4, 4, 10)

Draw collision boxes if enabled

if self.show_collision_boxes:

Player collision box

pyxel.rectb(self.player_x, self.player_y,

self.player_width, self.player_height, 7)

Coin collision box (if active)

if self.coin_active:

pyxel.rectb(self.coin_x, self.coin_y,

self.coin_width, self.coin_height, 7)

Draw score and instructions

pyxel.text(5, 5, f"SCORE: {self.score}", 7)

296

47.5 Circle Collision: Perfect for Round Objects

pyxel.text(5, 15, "Use arrow keys to move", 7)

pyxel.text(5, 25, "T: Toggle collision boxes", 7)

pyxel.text(5, 35, "R: Reset coin if collected", 7)

Draw collision status

is_colliding = self.coin_active and self.check_collision(

self.player_x, self.player_y, self.player_width, self.player_height,

self.coin_x, self.coin_y, self.coin_width, self.coin_height

)

status = "COLLISION DETECTED!" if is_colliding else "No collision"

pyxel.text(5, 110, status, 8 if is_colliding else 7)

CollisionVisualizationDemo()

This enhanced version:

1. Shows collision boxes with white outlines
2. Allows toggling the visibility of these boxes with the T key
3. Displays the current collision status
4. Lets you reset the coin with the R key after collecting it

Visualization like this is invaluable for debugging your collision detection system.

47.5 Circle Collision: Perfect for Round Objects

While rectangle collision works well for most sprites, some objects are naturally round (balls, planets,
bubbles). For these, circle collision often provides more accurate results.

Circle collision is based on a simple principle: two circles collide if the distance between their centers is
less than the sum of their radii.

Here’s how to implement it:

def check_circle_collision(x1, y1, r1, x2, y2, r2):

"""

Check if two circles overlap.

(x1, y1): Center of first circle

r1: Radius of first circle

(x2, y2): Center of second circle

r2: Radius of second circle

"""

Calculate the distance between circle centers

distance_squared = (x2 - x1)**2 + (y2 - y1)**2

297

47 The Art of Collision Detection: Making Your Game Interactive

Check if this distance is less than the sum of radii

return distance_squared < (r1 + r2)**2

We use the squared distance to avoid the computationally expensive square root operation. Let’s see circle
collision in action:

import pyxel

class CircleCollisionDemo:

def __init__(self):

pyxel.init(160, 120, title="Circle Collision Demo")

Player properties (circle)

self.player_x = 40 # Center x

self.player_y = 60 # Center y

self.player_radius = 8

self.player_speed = 2

Enemy properties (circle)

self.enemy_x = 100 # Center x

self.enemy_y = 60 # Center y

self.enemy_radius = 8

self.enemy_speed_x = 1

self.enemy_speed_y = 0.5

Game state

self.collision = False

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Move player with arrow keys

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x = max(self.player_x - self.player_speed, self.player_radius)

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x = min(self.player_x + self.player_speed, 160 - self.player_radius)

if pyxel.btn(pyxel.KEY_UP):

self.player_y = max(self.player_y - self.player_speed, self.player_radius)

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y = min(self.player_y + self.player_speed, 120 - self.player_radius)

298

47.5 Circle Collision: Perfect for Round Objects

Move enemy

self.enemy_x += self.enemy_speed_x

self.enemy_y += self.enemy_speed_y

Bounce enemy off walls

if self.enemy_x - self.enemy_radius <= 0 or self.enemy_x + self.enemy_radius >= 160:

self.enemy_speed_x *= -1

if self.enemy_y - self.enemy_radius <= 0 or self.enemy_y + self.enemy_radius >= 120:

self.enemy_speed_y *= -1

Check for collision

self.collision = self.check_circle_collision(

self.player_x, self.player_y, self.player_radius,

self.enemy_x, self.enemy_y, self.enemy_radius

)

def check_circle_collision(self, x1, y1, r1, x2, y2, r2):

distance_squared = (x2 - x1)**2 + (y2 - y1)**2

return distance_squared < (r1 + r2)**2

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw player (blue circle)

player_color = 12

pyxel.circ(self.player_x, self.player_y, self.player_radius, player_color)

Draw enemy (red or pink circle)

enemy_color = 8 if self.collision else 14

pyxel.circ(self.enemy_x, self.enemy_y, self.enemy_radius, enemy_color)

Draw collision status

status = "COLLISION DETECTED!" if self.collision else "No collision"

pyxel.text(5, 5, status, 8 if self.collision else 7)

Draw instructions

pyxel.text(5, 15, "Use arrow keys to move blue circle", 7)

pyxel.text(5, 25, "Collision turns red ball into pink", 7)

pyxel.text(5, 35, "Press Q to quit", 7)

CircleCollisionDemo()

In this demo:

299

47 The Art of Collision Detection: Making Your Game Interactive

1. Both the player and enemy are represented as circles
2. We check for collisions using the circle collision formula
3. The enemy changes color when a collision is detected
4. The enemy bounces off the walls of the screen

Circle collision provides more natural-looking interactions for round objects, as there are no “corner”
artifacts that can occur with rectangle collision.

47.6 Mixed Collision Types: Circle-Rectangle Collision

Sometimes you need to detect collisions between different shapes. A common scenario is checking if a
circle (like a ball) collides with a rectangle (like a paddle or wall).

Here’s how to implement circle-rectangle collision:

def check_circle_rect_collision(circle_x, circle_y, radius, rect_x, rect_y, rect_w, rect_h):

"""

Check if a circle and rectangle overlap.

(circle_x, circle_y): Center of the circle

radius: Radius of the circle

(rect_x, rect_y): Top-left corner of the rectangle

rect_w, rect_h: Width and height of the rectangle

"""

Find the closest point on the rectangle to the circle

closest_x = max(rect_x, min(circle_x, rect_x + rect_w))

closest_y = max(rect_y, min(circle_y, rect_y + rect_h))

Calculate the distance between the circle's center and the closest point

distance_squared = (circle_x - closest_x)**2 + (circle_y - closest_y)**2

If the distance is less than the radius, there is a collision

return distance_squared < radius**2

Let’s create a demo of circle-rectangle collision:

import pyxel

class MixedCollisionDemo:

def __init__(self):

pyxel.init(160, 120, title="Circle-Rectangle Collision")

Ball properties (circle)

self.ball_x = 80

300

47.6 Mixed Collision Types: Circle-Rectangle Collision

self.ball_y = 30

self.ball_radius = 8

self.ball_speed_x = 1.5

self.ball_speed_y = 1

Paddle properties (rectangle)

self.paddle_width = 32

self.paddle_height = 8

self.paddle_x = 80 - self.paddle_width // 2

self.paddle_y = 100

self.paddle_speed = 3

Game state

self.collision = False

self.score = 0

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Move paddle with left and right arrow keys

if pyxel.btn(pyxel.KEY_LEFT):

self.paddle_x = max(self.paddle_x - self.paddle_speed, 0)

if pyxel.btn(pyxel.KEY_RIGHT):

self.paddle_x = min(self.paddle_x + self.paddle_speed, 160 - self.paddle_width)

Move ball

self.ball_x += self.ball_speed_x

self.ball_y += self.ball_speed_y

Bounce ball off walls

if self.ball_x - self.ball_radius <= 0 or self.ball_x + self.ball_radius >= 160:

self.ball_speed_x *= -1

if self.ball_y - self.ball_radius <= 0:

self.ball_speed_y *= -1

Check for collision between ball and paddle

self.collision = self.check_circle_rect_collision(

self.ball_x, self.ball_y, self.ball_radius,

self.paddle_x, self.paddle_y, self.paddle_width, self.paddle_height

)

301

47 The Art of Collision Detection: Making Your Game Interactive

Bounce ball off paddle

if self.collision and self.ball_speed_y > 0:

self.ball_speed_y *= -1

self.score += 1

Reset ball if it goes below the bottom edge

if self.ball_y - self.ball_radius > 120:

self.ball_x = 80

self.ball_y = 30

self.ball_speed_x = 1.5

self.ball_speed_y = 1

self.score = max(0, self.score - 1) # Lose a point

def check_circle_rect_collision(self, circle_x, circle_y, radius, rect_x, rect_y, rect_w, rect_h):

Find closest point on rectangle to circle

closest_x = max(rect_x, min(circle_x, rect_x + rect_w))

closest_y = max(rect_y, min(circle_y, rect_y + rect_h))

Calculate distance squared

distance_squared = (circle_x - closest_x)**2 + (circle_y - closest_y)**2

Check if distance is less than radius squared

return distance_squared < radius**2

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw ball (yellow circle)

pyxel.circ(self.ball_x, self.ball_y, self.ball_radius, 10)

Draw paddle (white rectangle)

paddle_color = 7

pyxel.rect(self.paddle_x, self.paddle_y,

self.paddle_width, self.paddle_height, paddle_color)

Draw score

pyxel.text(5, 5, f"SCORE: {self.score}", 7)

Draw instructions

pyxel.text(5, 15, "Use left/right arrow keys to move paddle", 7)

pyxel.text(5, 25, "Bounce the ball to score points", 7)

pyxel.text(5, 35, "Press Q to quit", 7)

MixedCollisionDemo()

302

47.7 Using Collision Detection in a Game: Coins and Obstacles

This simple Breakout-style game demonstrates:

1. Circle-rectangle collision between a ball and paddle
2. Bouncing physics based on collision detection
3. Score tracking based on successful bounces
4. Ball reset when it falls off the bottom of the screen

47.7 Using Collision Detection in a Game: Coins and Obstacles

Now that we understand the basic collision techniques, let’s create a more complete game example with
multiple collision types:

import pyxel

class CollisionGame:

def __init__(self):

pyxel.init(160, 120, title="Coin Collector Game")

Player properties (rectangle)

self.player_x = 80

self.player_y = 60

self.player_width = 8

self.player_height = 8

self.player_speed = 2

Coins (circles)

self.coins = [

[20, 20, 4, True], # x, y, radius, active

[40, 30, 4, True],

[60, 40, 4, True],

[80, 50, 4, True],

[100, 60, 4, True],

[120, 70, 4, True],

[140, 80, 4, True]

]

Obstacles (rectangles)

self.obstacles = [

[30, 50, 20, 8], # x, y, width, height

[70, 30, 20, 8],

[110, 90, 20, 8],

[50, 80, 8, 20],

[90, 20, 8, 20],

[130, 50, 8, 20]

303

47 The Art of Collision Detection: Making Your Game Interactive

]

Game state

self.score = 0

self.game_over = False

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Reset game with R key

if self.game_over and pyxel.btnp(pyxel.KEY_R):

self.__init__()

return

if not self.game_over:

Store the previous position for collision resolution

prev_x = self.player_x

prev_y = self.player_y

Move player with arrow keys

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x = max(self.player_x - self.player_speed, 0)

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x = min(self.player_x + self.player_speed, 160 - self.player_width)

if pyxel.btn(pyxel.KEY_UP):

self.player_y = max(self.player_y - self.player_speed, 0)

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y = min(self.player_y + self.player_speed, 120 - self.player_height)

Check for collisions with obstacles

for obstacle in self.obstacles:

if self.check_rect_collision(

self.player_x, self.player_y, self.player_width, self.player_height,

obstacle[0], obstacle[1], obstacle[2], obstacle[3]

):

Collision with obstacle! Revert to previous position

self.player_x = prev_x

self.player_y = prev_y

break

Check for collisions with coins

304

47.7 Using Collision Detection in a Game: Coins and Obstacles

for coin in self.coins:

if coin[3] and self.check_circle_rect_collision(

coin[0], coin[1], coin[2],

self.player_x, self.player_y, self.player_width, self.player_height

):

Collected a coin!

coin[3] = False

self.score += 10

Check if all coins are collected

all_collected = all(not coin[3] for coin in self.coins)

if all_collected:

self.game_over = True

def check_rect_collision(self, x1, y1, w1, h1, x2, y2, w2, h2):

Check for collision between two rectangles

if x1 + w1 <= x2 or x1 >= x2 + w2:

return False

if y1 + h1 <= y2 or y1 >= y2 + h2:

return False

return True

def check_circle_rect_collision(self, circle_x, circle_y, radius, rect_x, rect_y, rect_w, rect_h):

Find closest point on rectangle to circle

closest_x = max(rect_x, min(circle_x, rect_x + rect_w))

closest_y = max(rect_y, min(circle_y, rect_y + rect_h))

Calculate distance squared

distance_squared = (circle_x - closest_x)**2 + (circle_y - closest_y)**2

Check if distance is less than radius squared

return distance_squared < radius**2

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw player (green rectangle)

pyxel.rect(self.player_x, self.player_y,

self.player_width, self.player_height, 11)

Draw coins (yellow circles)

for coin in self.coins:

if coin[3]: # If active

pyxel.circ(coin[0], coin[1], coin[2], 10)

305

47 The Art of Collision Detection: Making Your Game Interactive

Draw obstacles (red rectangles)

for obstacle in self.obstacles:

pyxel.rect(obstacle[0], obstacle[1], obstacle[2], obstacle[3], 8)

Draw score

pyxel.text(5, 5, f"SCORE: {self.score}", 7)

Draw instructions

pyxel.text(5, 15, "Use arrow keys to move", 7)

pyxel.text(5, 25, "Collect all coins to win", 7)

pyxel.text(5, 35, "Avoid red obstacles", 7)

Draw game over screen

if self.game_over:

pyxel.rectb(50, 50, 60, 30, 7)

pyxel.rect(51, 51, 58, 28, 5)

pyxel.text(65, 60, "YOU WIN!", 10)

pyxel.text(60, 70, "Press R to restart", 7)

CollisionGame()

This more complete game example demonstrates:

1. Rectangle collision for obstacles (solid objects the player can’t pass through)
2. Circle-rectangle collision for coins (items the player can collect)
3. Collision resolution by reverting to the previous position when hitting obstacles
4. Game state management and win condition based on collecting all coins

47.8 Implementing Tile-Based Collision

Many 2D games use tile-based maps (like we’ve seen in previous lessons with Pyxel’s tilemap system). For
these games, we need a slightly different approach to collision detection:

import pyxel

class TileCollisionDemo:

def __init__(self):

pyxel.init(160, 120, title="Tile Collision Demo")

Player properties

self.player_x = 16

self.player_y = 16

306

47.8 Implementing Tile-Based Collision

self.player_width = 8

self.player_height = 8

self.player_speed = 2

Tile map representation (0 = empty, 1 = wall)

self.tile_size = 8

self.tile_map = [

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1],

[1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],

[1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

]

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Store previous position for collision resolution

prev_x = self.player_x

prev_y = self.player_y

Move player with arrow keys

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x -= self.player_speed

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x += self.player_speed

if pyxel.btn(pyxel.KEY_UP):

self.player_y -= self.player_speed

if pyxel.btn(pyxel.KEY_DOWN):

self.player_y += self.player_speed

307

47 The Art of Collision Detection: Making Your Game Interactive

Check for collision with tiles

if self.check_tile_collision(self.player_x, self.player_y,

self.player_width, self.player_height):

Collision detected! Revert to previous position

self.player_x = prev_x

self.player_y = prev_y

def check_tile_collision(self, x, y, width, height):

"""Check if a rectangle collides with any solid tiles in the map."""

Convert pixel coordinates to tile coordinates

left_tile = max(0, x // self.tile_size)

right_tile = min(19, (x + width - 1) // self.tile_size)

top_tile = max(0, y // self.tile_size)

bottom_tile = min(14, (y + height - 1) // self.tile_size)

Check each tile the rectangle might be touching

for tile_y in range(top_tile, bottom_tile + 1):

for tile_x in range(left_tile, right_tile + 1):

If this tile is solid (1 in our map), there's a collision

if self.tile_map[tile_y][tile_x] == 1:

return True

No collision with any solid tiles

return False

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw the tile map

for y in range(15):

for x in range(20):

if self.tile_map[y][x] == 1:

Draw a wall tile (brown rectangle)

pyxel.rect(x * self.tile_size, y * self.tile_size,

self.tile_size, self.tile_size, 4)

Draw the player (green rectangle)

pyxel.rect(self.player_x, self.player_y,

self.player_width, self.player_height, 11)

Draw instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

pyxel.text(5, 15, "Avoid brown walls", 7)

pyxel.text(5, 25, "Press Q to quit", 7)

308

47.9 Collision Response: What Happens After a Collision?

TileCollisionDemo()

This tile-based collision example demonstrates:

1. A 2D grid representing a simple maze
2. Converting pixel coordinates to tile coordinates for collision checking
3. Checking if the player’s rectangle overlaps with any solid tiles
4. Collision resolution by reverting to the previous position

This approach is muchmore efficient for large tile-basedmaps than checking collisionwith each individual
tile rectangle, as we only need to check the few tiles that the player might be touching.

47.9 Collision Response: What Happens After a Collision?

Detecting collisions is only half the battle. The other half is determining how your game should respond
when collisions occur. Here are some common collision responses:

1. BlockingMovement: Prevent the player frommoving through solid objects (as we’ve done in several
examples)

2. Collecting Items: Remove collectible items when the player touches them
3. Taking Damage: Reduce player health when colliding with enemies or hazards
4. Bouncing: Change direction based on collision (like in our ball example)
5. Pushing: Allow objects to push each other
6. Triggering Events: Start events or animations when certain objects collide

Let’s explore a couple of these responses in more detail:

47.9.1 Sliding Along Walls

In many games, when the player hits a wall, they can still slide along it. This feels more natural than
completely stopping. Here’s how to implement this:

import pyxel

class SlidingCollisionDemo:

def __init__(self):

pyxel.init(160, 120, title="Sliding Collision Demo")

Player properties

self.player_x = 80

self.player_y = 60

self.player_width = 8

self.player_height = 8

309

47 The Art of Collision Detection: Making Your Game Interactive

self.player_speed = 2

Obstacles (walls)

self.walls = [

[40, 30, 80, 8], # Horizontal wall

[40, 30, 8, 60], # Vertical wall

[40, 90, 80, 8], # Horizontal wall

[120, 30, 8, 60] # Vertical wall

]

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Calculate movement in X and Y directions

dx = 0

dy = 0

if pyxel.btn(pyxel.KEY_LEFT):

dx = -self.player_speed

if pyxel.btn(pyxel.KEY_RIGHT):

dx = self.player_speed

if pyxel.btn(pyxel.KEY_UP):

dy = -self.player_speed

if pyxel.btn(pyxel.KEY_DOWN):

dy = self.player_speed

Try moving horizontally

self.player_x += dx

Check for collisions after horizontal movement

for wall in self.walls:

if self.check_collision(self.player_x, self.player_y,

self.player_width, self.player_height,

wall[0], wall[1], wall[2], wall[3]):

Collision detected! Undo horizontal movement

self.player_x -= dx

break

Try moving vertically

self.player_y += dy

310

47.9 Collision Response: What Happens After a Collision?

Check for collisions after vertical movement

for wall in self.walls:

if self.check_collision(self.player_x, self.player_y,

self.player_width, self.player_height,

wall[0], wall[1], wall[2], wall[3]):

Collision detected! Undo vertical movement

self.player_y -= dy

break

Keep player within screen bounds

self.player_x = max(0, min(self.player_x, 160 - self.player_width))

self.player_y = max(0, min(self.player_y, 120 - self.player_height))

def check_collision(self, x1, y1, w1, h1, x2, y2, w2, h2):

Check for collision between two rectangles

if x1 + w1 <= x2 or x1 >= x2 + w2:

return False

if y1 + h1 <= y2 or y1 >= y2 + h2:

return False

return True

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw the walls (brown rectangles)

for wall in self.walls:

pyxel.rect(wall[0], wall[1], wall[2], wall[3], 4)

Draw the player (green rectangle)

pyxel.rect(self.player_x, self.player_y,

self.player_width, self.player_height, 11)

Draw instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

pyxel.text(5, 15, "Notice how you can slide along walls", 7)

pyxel.text(5, 25, "Press Q to quit", 7)

SlidingCollisionDemo()

The key insight here is to separate horizontal and vertical movement:

1. We move horizontally first and check for collisions
2. Then we move vertically and check for collisions again
3. This allows the player to slide along walls when only one direction is blocked

311

47 The Art of Collision Detection: Making Your Game Interactive

47.9.2 Pushing Objects

Another common collision response is pushing objects. Let’s implement a simple box-pushing
mechanic:

import pyxel

class BoxPushingDemo:

def __init__(self):

pyxel.init(160, 120, title="Box Pushing Demo")

Player properties

self.player_x = 80

self.player_y = 60

self.player_width = 8

self.player_height = 8

self.player_speed = 2

Boxes that can be pushed

self.boxes = [

[40, 40, 8, 8], # x, y, width, height

[100, 40, 8, 8],

[40, 80, 8, 8],

[100, 80, 8, 8]

]

Walls that cannot be moved

self.walls = [

[20, 20, 120, 4], # Top wall

[20, 20, 4, 80], # Left wall

[20, 100, 120, 4], # Bottom wall

[140, 20, 4, 84] # Right wall

]

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Store previous position

prev_x = self.player_x

prev_y = self.player_y

Calculate movement

312

47.9 Collision Response: What Happens After a Collision?

dx = 0

dy = 0

if pyxel.btn(pyxel.KEY_LEFT):

dx = -self.player_speed

if pyxel.btn(pyxel.KEY_RIGHT):

dx = self.player_speed

if pyxel.btn(pyxel.KEY_UP):

dy = -self.player_speed

if pyxel.btn(pyxel.KEY_DOWN):

dy = self.player_speed

Update player position

self.player_x += dx

self.player_y += dy

Check for collisions with walls (cannot be pushed)

wall_collision = False

for wall in self.walls:

if self.check_collision(self.player_x, self.player_y,

self.player_width, self.player_height,

wall[0], wall[1], wall[2], wall[3]):

wall_collision = True

break

if wall_collision:

Revert to previous position if hitting a wall

self.player_x = prev_x

self.player_y = prev_y

else:

Check for collisions with boxes (can be pushed)

for i, box in enumerate(self.boxes):

if self.check_collision(self.player_x, self.player_y,

self.player_width, self.player_height,

box[0], box[1], box[2], box[3]):

Try to push the box

box_new_x = box[0] + dx

box_new_y = box[1] + dy

Check if the box would hit a wall

box_wall_collision = False

for wall in self.walls:

if self.check_collision(box_new_x, box_new_y,

box[2], box[3],

313

47 The Art of Collision Detection: Making Your Game Interactive

wall[0], wall[1], wall[2], wall[3]):

box_wall_collision = True

break

Check if the box would hit another box

box_box_collision = False

for j, other_box in enumerate(self.boxes):

if i != j: # Don't check collision with itself

if self.check_collision(box_new_x, box_new_y,

box[2], box[3],

other_box[0], other_box[1],

other_box[2], other_box[3]):

box_box_collision = True

break

if box_wall_collision or box_box_collision:

Box can't be pushed, revert player position

self.player_x = prev_x

self.player_y = prev_y

else:

Push the box

self.boxes[i][0] = box_new_x

self.boxes[i][1] = box_new_y

break # Only push one box at a time

def check_collision(self, x1, y1, w1, h1, x2, y2, w2, h2):

Check for collision between two rectangles

if x1 + w1 <= x2 or x1 >= x2 + w2:

return False

if y1 + h1 <= y2 or y1 >= y2 + h2:

return False

return True

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw the walls (dark gray rectangles)

for wall in self.walls:

pyxel.rect(wall[0], wall[1], wall[2], wall[3], 5)

Draw the boxes (brown rectangles)

for box in self.boxes:

pyxel.rect(box[0], box[1], box[2], box[3], 4)

314

47.10 Performance Considerations

Draw the player (green rectangle)

pyxel.rect(self.player_x, self.player_y,

self.player_width, self.player_height, 11)

Draw instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

pyxel.text(5, 15, "Push the brown boxes", 7)

pyxel.text(5, 25, "Press Q to quit", 7)

BoxPushingDemo()

This box-pushing example demonstrates:

1. Collision detection between the player and pushable boxes
2. Attempting to move boxes in the direction the player is moving
3. Checking if boxes can be pushed (no walls or other boxes in the way)
4. Different collision responses for different types of objects

47.10 Performance Considerations

As your games grow more complex with more objects to check for collisions, performance can become a
concern. Here are some strategies to optimize collision detection:

47.10.1 1. Spatial Partitioning

Instead of checking every object against every other object (which is O(n²)), divide your world into regions
and only check objects within the same or adjacent regions.

47.10.2 2. Broad Phase and Narrow Phase

Use a two-phase approach:

• Broad Phase: Quickly eliminate pairs of objects that are far apart (using techniques like spatial
partitioning)

• Narrow Phase: Perform detailed collision detection only on pairs that could potentially collide

315

47 The Art of Collision Detection: Making Your Game Interactive

47.10.3 3. Collision Culling

Don’t perform collision checks on:

• Objects that are too far away
• Objects that don’t need collision (decorative elements)
• Objects that are inactive or destroyed

47.10.4 4. Custom Collision Shapes

For complex objects, use simpler collision shapes than the actual visual sprites. For example, represent a
complex character with a few simple rectangles or circles for collision purposes.

47.11 Practice Time: Your Collision Detection Quest

Now it’s your turn to practice collision detection. Complete these challenges:

1. Create a simple maze game where the player must navigate through walls to reach a goal

2. Implement both rectangle and circle collision in the same game (e.g., rectangle player, circular col-
lectibles, rectangle obstacles)

3. Add at least one special collision response (like pushing, bouncing, or triggering an event)

Here’s a starting point for your quest:

import pyxel

class MyCollisionGame:

def __init__(self):

pyxel.init(160, 120, title="My Collision Game")

Player properties

self.player_x = 16

self.player_y = 16

self.player_width = 8

self.player_height = 8

self.player_speed = 2

Goal position

self.goal_x = 136

self.goal_y = 96

self.goal_radius = 6

316

47.11 Practice Time: Your Collision Detection Quest

Initialize walls, collectibles, etc.

Your code here

Game state

self.game_won = False

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update game state

Your code here

def check_rect_collision(self, x1, y1, w1, h1, x2, y2, w2, h2):

Implement rectangle collision detection

Your code here

pass

def check_circle_collision(self, x1, y1, r1, x2, y2, r2):

Implement circle collision detection

Your code here

pass

def check_circle_rect_collision(self, circle_x, circle_y, radius, rect_x, rect_y, rect_w, rect_h):

Implement circle-rectangle collision detection

Your code here

pass

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw game elements

Your code here

Draw player

pyxel.rect(self.player_x, self.player_y,

self.player_width, self.player_height, 11)

Draw goal

pyxel.circ(self.goal_x, self.goal_y, self.goal_radius, 10)

Draw instructions

317

47 The Art of Collision Detection: Making Your Game Interactive

pyxel.text(5, 5, "Use arrow keys to move", 7)

pyxel.text(5, 15, "Reach the yellow goal", 7)

Create and start your game

MyCollisionGame()

47.12 Common Bugs to Watch Out For

As you implement collision detection in your games, be wary of these common issues:

1. Off-by-One Errors: Be consistent about whether you include or exclude boundary pixels in your
collision calculations.

2. Tunneling: Fast-moving objects can “tunnel” through thin walls if they move far enough in one
frame. Solution: use continuous collision detection or smaller movement steps.

3. Corner Cases: Test collisions at corners and edges specifically, as these often have unique behaviors.

4. Collision Resolution Order: When resolving multiple collisions, the order matters. Resolve the
most important collisions first.

5. Memory vs. Performance Trade-offs: More precise collision detection usually requires more com-
putation. Balance precision with performance needs.

6. Rounding Errors: Floating-point calculations can lead to small errors that accumulate over time.
Be careful with equality comparisons.

7. Collision Feedback Loops: Objects can get stuck in a cycle of colliding, moving back, colliding
again, etc. Implement proper collision resolution to avoid this.

8. Z-Order Issues: In 2D games, objects at different visual layers might not need collision detection
between them.

47.13 Conclusion and Resources for Further Exploration

You’ve now learned the fundamental techniques for detecting and responding to collisions in your Pyxel
games. These skills form the foundation of virtually all game interactions, from collecting coins to battling
enemies.

To further enhance your collision detection skills, check out these resources:

1. Collision Detection for Dummies - A comprehensive guide to 2D collision detection techniques.

2. 2D Collision Detection - An excellent resource with interactive examples for various collision de-
tection methods.

318

https://www.metanetsoftware.com/technique/tutorialA.html
https://www.jeffreythompson.org/collision-detection/index.php

47.13 Conclusion and Resources for Further Exploration

3. Red Blob Games: Spatial Partitioning - A deeper dive into optimizing collision detection with
spatial partitioning.

4. Box2D - If you eventually want to implement more realistic physics, Box2D is a popular physics
engine (though it’s not directly compatible with Pyxel).

In our next lessons, we’ll build on this foundation to create more complex game mechanics. Keep experi-
menting with collision detection – it’s the invisible force that brings your game worlds to life by defining
how objects interact with each other!

319

https://www.redblobgames.com/pathfinding/grids/algorithms.html
https://box2d.org/documentation/

47 The Art of Collision Detection: Making Your Game Interactive

320

48 Bringing Sprites to Life: Animations and
Flipping

So far in our Pyxel journey, we’ve learned to draw sprites and move them around the screen. But static
sprites that simply slide around can make our games feel mechanical and lifeless. Today, we’ll learn how
to breathe life into our game characters through animations and flipping, transforming them from rigid
dolls into living entities with personality and direction.

48.1 What are Sprite Animations?

Sprite animation is the technique of displaying a sequence of images in rapid succession to create the
illusion of movement. It’s like the ancient flip books where each page showed a slightly different drawing,
and flipping through them quickly made the drawings appear to move.

In game development, we typically create sprite animations by:

1. Drawing several frames of the same character in different poses
2. Displaying these frames one after another at a specific rate
3. Looping through the sequence to create continuous movement

48.2 Frame-Based Animation: The Basics

Let’s start with a simple example: a coin that spins. We’ll need to draw several frames of the coin at
different angles and then cycle through them.

Here’s how this would look in Pyxel:

import pyxel

class CoinAnimation:

def __init__(self):

pyxel.init(160, 120, title="Coin Animation")

pyxel.load("coin.pyxres")

For this example, we'll assume we have a sprite sheet with 15 frames

321

48 Bringing Sprites to Life: Animations and Flipping

of a spinning coin, each 8x8 pixels, laid out horizontally

at position (0, 0) in image bank 0

self.coin_animation_frame = 0 # Current frame of animation

self.coin_x = 80 # Center of screen

self.coin_y = 60

self.coin_v = 0

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update coin animation frame every 2 game frames (slower animation)

if pyxel.frame_count % 2 == 0:

Cycle through frames 0-14

self.coin_animation_frame = (self.coin_animation_frame + 1) % 15

Each frame is 8x8 pixels and placed horizontally in the sprite sheet

self.coin_u = self.coin_animation_frame * 8

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw the current frame

pyxel.blt(self.coin_x, self.coin_y, 0, self.coin_u, self.coin_v, 8, 8, 15)

Display information

pyxel.text(5, 5, "Simple Coin Animation", 7)

pyxel.text(5, 15, "Current frame: " + str(self.coin_animation_frame), 7)

CoinAnimation()

In this example:

1. We keep track of the current animation frame with self.animation_frame

2. We update this frame counter every 2 game frames (controlled by the modulo % operator)
3. When drawing, we calculate the position in our sprite sheet based on the current frame

322

48.3 Creating a Walking Character Animation

48.3 Creating a Walking Character Animation

Now, let’s create a more complex animation: a character that walks. We’ll need frames for the walking
animation and will change the animation based on user input.

import pyxel

class WalkingCharacter:

def __init__(self):

pyxel.init(160, 120, title="Walking Animation")

Character variables

self.player_x = 80

self.player_y = 60

self.player_direction = 1 # 1 for right, -1 for left

self.player_speed = 2

Animation variables

self.is_walking = False

self.walk_frame = 0

self.animation_speed = 6 # Update animation every 6 frames

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Reset walking state

self.is_walking = False

Update position based on keyboard input

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x -= self.player_speed

self.player_direction = -1

self.is_walking = True

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x += self.player_speed

self.player_direction = 1

self.is_walking = True

Keep player within screen bounds

self.player_x = max(0, min(self.player_x, 160 - 16))

323

48 Bringing Sprites to Life: Animations and Flipping

Update animation frame if walking

if self.is_walking and pyxel.frame_count % self.animation_speed == 0:

self.walk_frame = (self.walk_frame + 1) % 2 # Assuming 2 frames of walking animation

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Calculate sprite position in the sprite sheet based on:

- Walking or standing (different sprite rows)

- Current walk animation frame

Assuming sprite sheet layout:

- Standing sprite at (0, 0)

- Walking frame 1 at (16, 0)

- Walking frame 2 at (32, 0)

if self.is_walking:

Use walking animation frames

u = 16 + (self.walk_frame * 16)

else:

Use standing frame

u = 0

v = 0 # y-coordinate in the sprite sheet

Draw the character with direction (flipping)

w = 16 * self.player_direction # Positive or negative width for flipping

pyxel.blt(self.player_x, self.player_y, 0, u, v, w, 16, 0)

Display instructions

pyxel.text(5, 5, "Use LEFT/RIGHT arrows to walk", 7)

pyxel.text(5, 15, "Walking: " + str(self.is_walking), 7)

pyxel.text(5, 25, "Direction: " + ("Right" if self.player_direction > 0 else "Left"), 7)

WalkingCharacter()

This example demonstrates:

1. Tracking the character’s direction (left or right)
2. Using an is_walking flag to know when to animate
3. Updating the animation frame only when the character is walking
4. Using different regions of the sprite sheet for different animation frames

324

48.4 The Magic of Flipping Sprites

48.4 The Magic of Flipping Sprites

You may have noticed a clever technique in the walking character example:

w = 16 * self.player_direction # Positive or negative width for flipping

This is one of Pyxel’s most useful features: the ability to flip sprites horizontally by using a negative width
in the blt() function.

When you specify a negative width, Pyxel draws the sprite flipped horizontally. This is incredibly useful
because:

1. It saves space in your sprite sheet - you only need to draw characters facing one direction
2. It simplifies your code - you don’t need different animation sequences for left and right

Here’s how flipping works in Pyxel:

Normal sprite (facing right)

pyxel.blt(x, y, img, u, v, w, h, colkey)

Flipped sprite (facing left)

pyxel.blt(x, y, img, u, v, -w, h, colkey) # Negative width!

You can also flip sprites vertically by using a negative height:

Flipped vertically (upside down)

pyxel.blt(x, y, img, u, v, w, -h, colkey) # Negative height!

And you can even flip both horizontally and vertically:

Flipped both ways

pyxel.blt(x, y, img, u, v, -w, -h, colkey) # Both negative!

48.5 Multi-directional Character with Animations

Let’s create a more complex example: a character that can walk in four directions (up, down, left, right),
with appropriate animations for each direction:

325

48 Bringing Sprites to Life: Animations and Flipping

import pyxel

class MultiDirectionalCharacter:

def __init__(self):

pyxel.init(160, 120, title="Multi-Directional Character")

Character position

self.player_x = 80

self.player_y = 60

self.player_speed = 2

Animation state

self.direction = 0 # 0: down, 1: right, 2: up, 3: left

self.is_moving = False

self.anim_frame = 0

self.anim_speed = 5 # Update animation every 5 frames

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Reset movement state

self.is_moving = False

Check movement keys

if pyxel.btn(pyxel.KEY_LEFT):

self.player_x -= self.player_speed

self.direction = 3 # Left

self.is_moving = True

elif pyxel.btn(pyxel.KEY_RIGHT):

self.player_x += self.player_speed

self.direction = 1 # Right

self.is_moving = True

elif pyxel.btn(pyxel.KEY_UP):

self.player_y -= self.player_speed

self.direction = 2 # Up

self.is_moving = True

elif pyxel.btn(pyxel.KEY_DOWN):

self.player_y -= self.player_speed

326

48.5 Multi-directional Character with Animations

self.direction = 0 # Down

self.is_moving = True

Keep player within screen bounds

self.player_x = max(0, min(self.player_x, 160 - 16))

self.player_y = max(0, min(self.player_y, 120 - 16))

Update animation if moving

if self.is_moving and pyxel.frame_count % self.anim_speed == 0:

self.anim_frame = (self.anim_frame + 1) % 2 # 2 frames per direction

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Assume sprite sheet layout:

- Down-facing frames at (0,0) and (16,0)

- Right-facing frames at (0,16) and (16,16)

- Up-facing frames at (0,32) and (16,32)

- Left-facing frames at (0,48) and (16,48)

For simplicity, we'll use row-based sprite organization

or you could use flipping for left/right

Calculate sprite position in the sprite sheet

u = self.anim_frame * 16 # Column based on animation frame

v = self.direction * 16 # Row based on direction

Draw the character

pyxel.blt(self.player_x, self.player_y, 0, u, v, 16, 16, 0)

Display instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

Show current state

directions = ["Down", "Right", "Up", "Left"]

pyxel.text(5, 15, f"Direction: {directions[self.direction]}", 7)

pyxel.text(5, 25, f"Moving: {self.is_moving}", 7)

MultiDirectionalCharacter()

In this example:

1. We use a direction variable to track which way the character is facing
2. We organize our sprite sheet by direction (rows) and animation frame (columns)
3. We calculate the sprite position based on both the current direction and animation frame

327

48 Bringing Sprites to Life: Animations and Flipping

48.6 Creating an Animation Manager

As our games grow more complex, we might have many animations to manage. Let’s create a simple
animation manager class that can handle multiple animation sequences:

import pyxel

class Animation:

def __init__(self, frames, frame_duration=5, loop=True):

"""Initialize an animation sequence.

Args:

frames: List of (u, v, w, h) tuples defining sprite locations

frame_duration: How many game frames each animation frame lasts

loop: Whether the animation should loop

"""

self.frames = frames

self.frame_duration = frame_duration

self.loop = loop

self.current_frame = 0

self.frame_timer = 0

self.finished = False

def update(self):

"""Update the animation state. Call this each frame."""

if self.finished:

return

self.frame_timer += 1

if self.frame_timer >= self.frame_duration:

self.frame_timer = 0

self.current_frame += 1

Check if we've reached the end

if self.current_frame >= len(self.frames):

if self.loop:

self.current_frame = 0 # Loop back to start

else:

self.current_frame = len(self.frames) - 1 # Stay on last frame

self.finished = True

def draw(self, x, y, img=0, colkey=0):

"""Draw the current frame of the animation."""

328

48.6 Creating an Animation Manager

u, v, w, h = self.frames[self.current_frame]

pyxel.blt(x, y, img, u, v, w, h, colkey)

def reset(self):

"""Reset the animation to the beginning."""

self.current_frame = 0

self.frame_timer = 0

self.finished = False

class AnimationExample:

def __init__(self):

pyxel.init(160, 120, title="Animation Manager")

Create various animations

Define walking animation frames (assuming 16x16 sprites)

walk_frames = [(0, 0, 16, 16), (16, 0, 16, 16)]

self.walk_anim = Animation(walk_frames, frame_duration=8)

Define a coin spinning animation (assuming 8x8 sprites)

coin_frames = [(0, 16, 8, 8), (8, 16, 8, 8), (16, 16, 8, 8), (24, 16, 8, 8)]

self.coin_anim = Animation(coin_frames, frame_duration=5)

Define an explosion animation that doesn't loop

explosion_frames = [(0, 24, 16, 16), (16, 24, 16, 16), (32, 24, 16, 16)]

self.explosion_anim = Animation(explosion_frames, frame_duration=4, loop=False)

Track explosion state

self.explosion_active = False

Position

self.character_x = 40

self.character_y = 60

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update animations

self.walk_anim.update()

self.coin_anim.update()

329

48 Bringing Sprites to Life: Animations and Flipping

if self.explosion_active:

self.explosion_anim.update()

If explosion finished, reset it

if self.explosion_anim.finished:

self.explosion_active = False

Start explosion with space key

if pyxel.btnp(pyxel.KEY_SPACE):

self.explosion_anim.reset()

self.explosion_active = True

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw the walking character

self.walk_anim.draw(self.character_x, self.character_y, colkey=0)

Draw the spinning coin

self.coin_anim.draw(100, 60, colkey=0)

Draw explosion if active

if self.explosion_active:

self.explosion_anim.draw(80, 40, colkey=0)

Display instructions

pyxel.text(5, 5, "Animation Manager Example", 7)

pyxel.text(5, 15, "Press SPACE for explosion", 7)

Show which animations are playing

pyxel.text(5, 100, "Walking: Always playing", 7)

pyxel.text(5, 110, "Coin: Always playing", 7)

pyxel.text(5, 120, f"Explosion: {'Playing' if self.explosion_active else 'Inactive'}", 7)

AnimationExample()

This Animation Manager demonstrates:

1. A reusable Animation class that handles timing, looping, and frame advancement
2. How to create different animation sequences with various durations and behaviors
3. A non-looping animation (explosion) that plays once and then stops

330

48.7 Advanced Techniques

48.7 Advanced Techniques

48.7.1 1. Variable Animation Speed

Sometimes you want animations to speed up or slow down based on game conditions. For instance, a
character might run faster as they gain speed:

Adjust animation speed based on movement speed

animation_speed = max(10 - abs(movement_speed), 3) # Faster movement = lower frame duration

48.7.2 2. Tinting or Color Effects

You can create visual effects by cycling through different color keys or by layering sprites:

Flash a character red when damaged

if is_damaged:

Draw a red tinted version underneath

pyxel.blt(player_x, player_y, 0, damage_u, damage_v, player_w, player_h, 0)

48.7.3 3. Transition Animations

You can create special animations for transitions between states:

If character just landed, play landing animation once before resuming idle animation

if just_landed:

landing_animation.draw(player_x, player_y)

if landing_animation.finished:

just_landed = False

else:

idle_animation.draw(player_x, player_y)

48.8 Practice Time: Animate Your Game World

Now it’s your turn to create animations in Pyxel. Try these challenges:

1. Create a character with at least two animation states: idle and walking

2. Implement sprite flipping so the character faces the direction it’s moving

3. Add a background element with a continuous animation (like a flowing river or a flickering torch)

331

48 Bringing Sprites to Life: Animations and Flipping

Here’s a starting point for your quest:

import pyxel

class MyAnimatedGame:

def __init__(self):

pyxel.init(160, 120, title="My Animated Game")

Initialize character variables

self.player_x = 80

self.player_y = 60

self.player_direction = 1 # 1 for right, -1 for left

self.is_walking = False

self.walk_frame = 0

Initialize background animation

self.bg_frame = 0

pyxel.run(self.update, self.draw)

def update(self):

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update character state and position

Your code here

Update animation frames

Your code here

def draw(self):

pyxel.cls(1) # Clear screen with dark blue

Draw animated background element

Your code here

Draw character with appropriate animation frame

Your code here

Display instructions

pyxel.text(5, 5, "Use arrow keys to move", 7)

Create and start your game

MyAnimatedGame()

332

48.9 Common Bugs to Watch Out For

48.9 Common Bugs to Watch Out For

As you experiment with animations and flipping, be aware of these common issues:

1. Frame Timing Issues: If animations play too fast or too slow, check your frame timing logic. Re-
member that pyxel.frame_count % speed == 0 creates a delay between frames.

2. Flipping and Positioning: When flipping sprites, the position can seemwrong. This is because when
you flip a sprite horizontally, its origin shifts from the left side to the right side. You may need to
adjust the x-coordinate to compensate.

3. Index Out of Range: If your animation code tries to access a frame that doesn’t exist, you’ll get an
index error. Always use modulo (%) to cycle through frames or check array bounds.

4. Transparent Color Issues: When flipping sprites, the transparent color remains the same. Ensure
your sprites have consistent transparent areas.

5. Animation State Conflicts: If multiple animation states try to play at once, they can conflict. Es-
tablish clear rules for which animations take priority.

6. Forgetting to Reset Animations: When changing states, remember to reset animations that should
start over (like a jump animation).

7. Hard-Coded Frame Counts: Avoid hard-coding the number of frames in an animation. Use vari-
ables or len() so you can easily change animations later.

48.10 Conclusion and Resources for Further Animation Learning

You’ve now learned how to bring your game sprites to life through frame-based animation and sprite
flipping. These techniques form the foundation of character animation in 2D games and will make your
games more dynamic and engaging.

To further enhance your animation skills, check out these excellent resources:

1. The Principles of Animation - Learn the classic animation principles that make movements feel
natural and appealing.

2. Sprite Sheet Animation Tutorial - A guide to creating and organizing effective sprite sheets.

3. Pixel Art Animation Techniques - Specific tips for pixel art animation that works well with Pyxel’s
aesthetic.

4. Game Programming Patterns - Update Method - A deeper look at how to structure animation code
in games.

In our next lesson, we’ll explore using tilemaps to create game levels. Keep animating and experimenting
– with these animation skills, you can now create characters and worlds that truly come alive!

333

https://www.creativebloq.com/advice/understand-the-12-principles-of-animation
https://www.codeandweb.com/texturepacker/tutorials/how-to-create-a-sprite-sheet
https://lospec.com/pixel-art-tutorials/tags/animation
https://gameprogrammingpatterns.com/update-method.html

48 Bringing Sprites to Life: Animations and Flipping

334

49 Pyxel Commands Cheatsheet (Lessons 15a-15f)

49.1 Initialization and Core Functions

Command Description Example

pyxel.init(width, height,

title="Title")

Initialize Pyxel with specified screen
dimensions

pyxel.init(160, 120,

title="My Game")

pyxel.run(update, draw) Start the Pyxel application with update
and draw functions

pyxel.run(self.update,

self.draw)

pyxel.quit() Exit the Pyxel application if

pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

pyxel.cls(col) Clear the screen with specified color pyxel.cls(0) # Clear with

black

pyxel.frame_count Get the number of frames since the
application started

animation_frame =

pyxel.frame_count % 30

49.2 Input Handling

Command Description Example

pyxel.btn(key) Check if a button is being held down if

pyxel.btn(pyxel.KEY_RIGHT):

player_x += 2

pyxel.btnp(key) Check if a button was just pressed if

pyxel.btnp(pyxel.KEY_SPACE):

fire_weapon()

pyxel.mouse_x Get current mouse X position cursor_x = pyxel.mouse_x

pyxel.mouse_y Get current mouse Y position cursor_y = pyxel.mouse_y

pyxel.mouse(visible) Show or hide the mouse cursor pyxel.mouse(True) # Show

mouse cursor

49.3 Constants for Keys

335

49 Pyxel Commands Cheatsheet (Lessons 15a-15f)

Constant Description

pyxel.KEY_UP Up arrow key
pyxel.KEY_DOWN Down arrow key
pyxel.KEY_LEFT Left arrow key
pyxel.KEY_RIGHT Right arrow key
pyxel.KEY_SPACE Space key
pyxel.KEY_RETURN Enter/Return key
pyxel.KEY_Q Q key (commonly used to quit)
pyxel.MOUSE_BUTTON_LEFT Left mouse button
pyxel.MOUSE_BUTTON_RIGHT Right mouse button

336

49.4 Drawing Primitives

49.4 Drawing Primitives

Command Description Example

pyxel.pset(x, y, col) Draw a single pixel pyxel.pset(10, 10, 7) #

White pixel

pyxel.line(x1, y1, x2, y2,

col)

Draw a line pyxel.line(10, 10, 50, 50,

8) # Red line

pyxel.rect(x, y, w, h,

col)

Draw a filled rectangle pyxel.rect(10, 10, 40, 30,

3) # Dark green rect

pyxel.rectb(x, y, w, h,

col)

Draw a rectangle outline pyxel.rectb(10, 10, 40,

30, 7) # White outline

pyxel.circ(x, y, r, col) Draw a filled circle pyxel.circ(40, 40, 10, 12)

Light blue circle

pyxel.circb(x, y, r, col) Draw a circle outline pyxel.circb(40, 40, 10, 7)

White circle outline

pyxel.tri(x1, y1, x2, y2,

x3, y3, col)

Draw a filled triangle pyxel.tri(30, 10, 50, 50,

10, 50, 11) # Green

triangle

pyxel.trib(x1, y1, x2, y2,

x3, y3, col)

Draw a triangle outline pyxel.trib(30, 10, 50, 50,

10, 50, 7) # White

outline

pyxel.text(x, y, text,

col)

Draw text pyxel.text(10, 10, "Hello

Pyxel!", 7) # White text

49.5 Sprite and Image Handling

Command Description Example

pyxel.blt(x, y, img, u, v,

w, h, [colkey])

Draw a sprite from the image bank pyxel.blt(10, 10, 0, 0, 0,

16, 16, 0) # 16x16 sprite

with black transparent

pyxel.load(filename) Load resources from a .pyxres file pyxel.load("game_resources.pyxres")

pyxel.images[bank].load(x,

y, filename)

Load an image into the image bank pyxel.images[0].load(0, 0,

"character.png")

pyxel.images[bank].pset(x,

y, col)

Set a pixel color in the image bank pyxel.images[0].pset(5, 5,

8) # Red pixel in bank 0

49.6 Image Bank Structure

pyxel.images[0] # First image bank page (0)

337

49 Pyxel Commands Cheatsheet (Lessons 15a-15f)

pyxel.images[1] # Second image bank page (1)

pyxel.images[2] # Third image bank page (2)

Each image bank is a 256x256 pixel area where you can store sprites and other graphical assets.

338

49.7 Colors

49.7 Colors

Pyxel has a fixed 16-color palette (0-15):

Color Number Color Name

0 Black
1 Dark Blue
2 Purple
3 Dark Green
4 Brown
5 Dark Gray
6 Light Gray
7 White
8 Red
9 Orange
10 Yellow
11 Light Green
12 Light Blue
13 Gray
14 Pink
15 Peach

49.8 Game Development Patterns

49.8.1 Basic Game Structure

import pyxel

class Game:

def __init__(self):

pyxel.init(160, 120, title="My Pyxel Game")

self.player_x = 80

self.player_y = 60

pyxel.run(self.update, self.draw)

def update(self):

Handle quitting

if pyxel.btnp(pyxel.KEY_Q):

pyxel.quit()

Update game state here

339

49 Pyxel Commands Cheatsheet (Lessons 15a-15f)

if pyxel.btn(pyxel.KEY_RIGHT):

self.player_x += 2

def draw(self):

Clear screen

pyxel.cls(0)

Draw game elements

pyxel.circ(self.player_x, self.player_y, 8, 11)

Start the game

Game()

49.8.2 Boundary Management

def keep_in_bounds(x, y, width, height, screen_width, screen_height):

"""Keep an object within screen boundaries."""

x = max(0, min(x, screen_width - width))

y = max(0, min(y, screen_height - height))

return x, y

49.8.3 Sprite Atlas Pattern

Sprite atlas dictionary

atlas = {

"player": (0, 0, 0, 16, 16, 0), # bank, x, y, width, height, colorkey

"enemy": (0, 16, 0, 16, 16, 0),

"item": (0, 0, 16, 8, 8, 0)

}

def draw_sprite(name, x, y):

if name in atlas:

bank, u, v, w, h, colorkey = atlas[name]

pyxel.blt(x, y, bank, u, v, w, h, colorkey)

49.9 Tips and Best Practices

1. Organization: Group related sprites together in the image bank
2. Transparency: Use color 0 (black) as the transparent color for sprites

340

49.9 Tips and Best Practices

3. Coordinate System: (0,0) is at the top-left corner; x increases right, y increases down
4. Performance: Minimize drawing operations for better performance
5. Input: Use btn() for continuous actions (movement) and btnp() for one-time actions (shooting)

341

	Cover
	Preface
	About the Book
	The Legend of Parzival
	Python Lessons
	Assignments
	Final Thoughts

	Announcing the Quest: Your First Steps in Python
	The Magical print() Function
	The Art of Comments: Leaving Trail Marks
	The Nature of Strings: Magic Words
	The Power of Concatenation: Combining Magic Words
	Combining Our Powers: A Grand Announcement
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Language of Chivalry: Mastering Escape Characters
	What are Escape Characters?
	The Most Common Escape Characters
	The Magic of \n: Creating New Lines
	The Power of \t: Adding Tabs
	Quoting Within Quotes: \" and \'
	The Elusive Backslash: \\
	Combining Escape Characters: The Ultimate Spell
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Parzival's Identity: The Magic of Variables
	What are Variables?
	Creating and Using Variables
	Changing Variable Values
	Variable Naming Rules
	Practice Time: Create Your Hero
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Power of Input: Interacting with the User
	What is input()?
	How input() Works
	Using input() with Different Types of Data
	Creating an Interactive Story
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Debugging Basics: Unraveling the Mysteries of Code
	What is Debugging?
	Types of Errors
	Reading Error Messages
	Basic Debugging Techniques
	Debugging in VSCode
	Practice Time: Debug These Spells
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Python Data Types: Strings and Numeric Types
	The Two Realms: Strings and Numbers
	Strings: The Realm of Text
	Numeric Types: The Realm of Numbers
	The type() Function: Identifying the Species
	Transformation Spells: Converting Between Types
	str(): Turning Anything into a String
	int(): Converting to Integers
	float(): Converting to Floating-Point Numbers
	Practical Magic: Using These Powers
	Practice Your Magic
	Common Bugs to Watch Out For
	Conclusion
	Further Resources

	Arithmetic Operators: The Magic of Mathematical Operations
	The Basic Arithmetic Spells
	Addition (+)
	Subtraction (-)
	Multiplication (*)
	Division (/)
	Floor Division (//)
	Modulus (%)
	Exponentiation (**)
	Order of Operations
	Combining Arithmetic with Assignment
	Practical Magic: A Potion Brewing Calculator
	Practice Your Arithmetic Magic
	Common Bugs to Watch Out For
	Conclusion
	Further Resources

	String Wizardry: Mastering F-Strings
	What are F-Strings?
	The Power of Expressions in F-Strings
	Formatting Options
	Multiline F-Strings
	Practice Time: Casting Your Own F-String Spells
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Grail Castle Test: Mastering `If' Statements
	What are Conditional Statements?
	The Structure of an `If' Statement
	Your First `If' Statement
	Using Comparison Operators in Conditions
	Combining Conditions with Logical Operators
	Practice Your `If' Statement Magic
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Grail Castle Test: Mastering `Elif' and `Else' Statements
	Introducing `Else': The Alternative Path
	The Power of `Elif': Multiple Conditions
	Combining `If', `Elif', and `Else' with Logical Operators
	The Importance of Order in `Elif' Statements
	Practice Your `Elif' and `Else' Magic
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Grail Castle's Labyrinth: Mastering Nested Conditional Statements
	What are Nested Conditional Statements?
	A Simple Example: The Enchanted Forest
	Complex Nested Structures: The Dragon's Lair
	The Importance of Indentation
	Combining Nested Conditionals with Logical Operators
	Practice Your Nested Conditional Magic
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Python Lists: Creating Your Inventory
	What is a List?
	Creating a List
	Accessing List Elements
	Negative Indexing
	Getting the Length of a List
	Checking if an Item is in the List
	Changing List Elements
	Practice Time: Manage Your Inventory
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Python Lists: Modifying Your Inventory
	Adding Elements to a List
	The append() Method: Adding to the End
	The insert() Method: Adding at a Specific Position
	Removing Elements from a List
	The remove() Method: Removing a Specific Item
	The pop() Method: Removing and Returning an Item
	Extending a List
	Clearing a List
	Counting Occurrences of an Item
	Finding the Index of an Item
	Sorting a List
	Reversing a List
	Practice Time: Manage Your Magical Armory
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Python Lists: The Art of Slicing
	What is List Slicing?
	Basic Slicing
	Omitting Start or End Indices
	Negative Indices in Slices
	Slicing with a Step
	Reversing a List with Slicing
	Creating a Copy of a List
	Modifying Lists with Slices
	Practice Time: Master the Art of Slicing
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Python Tuples: Immutable Treasures
	What are Tuples?
	Creating Tuples
	Accessing Tuple Elements
	Tuple Packing and Unpacking
	Tuple Methods
	When to Use Tuples Instead of Lists
	Practice Time: Master the Art of Tuples
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Magic of Merlin: Importing Libraries - The Random Library
	What are Python Libraries?
	The import Spell: Accessing Library Powers
	Exploring the Random Library
	1. randint(): Generating Random Integers
	2. choice(): Randomly Selecting from a List
	3. shuffle(): Randomly Reordering a List
	The from ... import Incantation: Selecting Specific Spells
	Renaming with the as Charm: Creating Aliases
	Practice Your Library Magic
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Magic of Merlin: Built-in Math Operations and the Math Library
	Python's Built-in Math Operations
	min(): Finding the Minimum Value
	max(): Finding the Maximum Value
	round(): Rounding Numbers
	The Math Library
	Importing the Math Library
	math.pi: The Pi Constant
	math.floor(): Rounding Down
	math.ceil(): Rounding Up
	math.sqrt(): Square Root
	Practical Magic: Combining Built-in Operations and the Math Library
	Practice Your Math Magic
	Common Bugs to Watch Out For

	The Round Table: Basic Sorting in Python
	1. The sorted() Function: Creating a New Sorted List
	2. The .sort() Method: Sorting a List in Place
	3. Reverse Sorting: From Z to A
	Sorting Numbers
	Practice Your Sorting Magic
	Common Bugs to Watch Out For

	Decoding Ancient Texts: String Methods (Part 1)
	1. The lower() Method: Transforming to Lowercase
	2. The upper() Method: Transforming to Uppercase
	3. The title() Method: Capitalizing Words
	Combining String Methods
	Checking User Input Regardless of Case
	Creating a Simple Text Formatter
	Practice Your String Magic
	Common Bugs to Watch Out For

	Decoding Ancient Texts: String Methods (Part 2)
	1. The strip() Method: Trimming Whitespace
	2. The split() Method: Breaking Strings Apart
	Combining strip() and split()
	Practice Your String Magic
	Common Bugs to Watch Out For

	Decoding Ancient Texts: The Art of Error Handling
	What are Errors in Python?
	The Try/Except Structure
	Handling Specific Error Types
	Multiple Except Blocks
	Using Try/Except with String Methods
	Practice Time: Error Handling Quests
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Try/Except Structure: Catching Errors
	The `as' Keyword: Capturing Error Messages
	The Raise Statement: Creating Our Own Errors
	Common Exception Types
	Practice Time: Error Handling Quests
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	For Loops: Parzival's Repetitive Quests
	What is a For Loop?
	Your First For Loop: Knocking on Castle Doors
	Looping Through Lists
	The Range Function: Parzival's Training Regimen
	The Power of Accumulation: Counting Parzival's Treasure
	Practice Time: Your For Loop Quests
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	While Loops: Parzival's Persistent Quests
	What is a While Loop?
	Your First While Loop: Parzival's Grail Quest
	While Loops with Counter Variables
	The Power of User Input in While Loops
	The `Break' and `Continue' Statements
	Practice Time: Your While Loop Quests
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Nested Loops: Parzival's Complex Quests
	What are Nested Loops?
	Nested For Loops: Exploring the Dungeon
	Nested While Loops: The Training Montage
	Combining For and While Loops: The Gauntlet Challenge
	Practice Time: Your Nested Loop Quests
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Advanced Debugging: Mastering the Art of Code Divination
	The VSCode Debugger: Your Crystal Ball
	Debugging in Action: Parzival's Treasure Hunt
	Advanced Techniques: Scrying the Code Streams
	Debugging Loops and Conditionals: Untangling the Threads of Fate
	Best Practices: The Code Mage's Wisdom
	Practice: Debug These Enchanted Scripts
	Common Debugging Pitfalls: Traps for the Unwary
	Conclusion and Further Enchantments

	Python Functions: Knightly Skills
	What are Functions?
	Defining a Function: Crafting Your Special Move
	Calling a Function: Using Your Special Move
	The Power of Reusability
	Functions as Code Organizers
	Practice Time: Craft Your Own Functions
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Python Functions: The Power of Parameters
	What are Parameters?
	Creating Functions with Parameters
	Multiple Parameters
	Default Parameters
	Keyword Arguments
	Practice Time: Your Parameter Quests
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Python Functions: Mastering Return Values
	What are Return Values?
	The return Statement
	Functions Without Return Values
	Returning Multiple Values
	Using Return Values in Conditional Statements
	Practice Time: Your Return Value Quests
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Python Functions: Understanding Variable Scope
	What is Variable Scope?
	Local Scope
	Global Scope
	The global Keyword
	Nested Functions and Nonlocal Variables
	Best Practices for Using Scope
	Practice Time
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Grail's Secrets: Creating and Accessing Dictionaries
	What is a Dictionary?
	Creating Your First Dictionary
	Accessing Values in a Dictionary
	Dictionary Keys and Values
	Handling Missing Keys
	Nested Dictionaries
	Practice Time: Your Dictionary Quests
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Grail's Secrets: Adding and Changing Dictionary Items
	Adding New Items to a Dictionary
	Changing Existing Items
	Modifying Numerical Values
	Adding and Modifying Items in Nested Dictionaries
	Using Dictionary Methods to Add and Update Items
	Practice Time: Modify Your Dictionaries
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Grail's Secrets: Removing Items from Dictionaries
	The pop() Method: Removing and Returning Items
	The del Statement: Direct Item Removal
	The clear() Method: Removing All Items
	Removing Items from Nested Dictionaries
	Pop with Default Value
	Practice Time: Dictionary Removal Practice
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Grail's Secrets: Dictionary Methods and the `in' Operator
	The `in' Operator: Checking for Keys
	Dictionary Methods: Getting Keys, Values, and Items
	The keys() Method: Getting All Keys
	The values() Method: Getting All Values
	The items() Method: Getting Key-Value Pairs
	The get() Method: Safe Dictionary Access
	The setdefault() Method: Setting Values Only if Key is Missing
	Practical Examples
	Practice Time: Using Dictionary Methods
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Why Do We Need Classes? A Tale of Adventure and Code
	Character Classes: Creating Your Own Types
	What is a Class?
	Creating Objects from Classes
	Adding More Attributes
	The __init__ Method and self
	Creating Multiple Classes
	Practice Time: Create Your Classes
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Character Actions: Adding Behaviors with Methods
	What are Methods?
	Methods with Parameters
	Methods that Change Object State
	Methods that Return Values
	A Complete Character Class
	Practice Time: Adding Methods to Your Classes
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Class Inheritance: Creating Character Specializations
	What is Inheritance?
	Creating Different Character Types
	Overriding Parent Methods
	Using super() in Methods
	Practice Time: Class Inheritance
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	Advanced Class Concepts: The Deeper Mysteries
	Class Attributes vs Instance Attributes
	Class Methods
	Static Methods
	Properties: Smart Attributes
	Putting It All Together
	Practice Time: Advanced Class Features
	Common Bugs to Watch Out For
	Conclusion and Further Resources

	The Beginning of Your Game Development Quest
	What is Pyxel and Why Use It?
	Basic Setup and Initialization
	Installing Pyxel
	Your First Pyxel Program

	The Game Loop: The Heart of Your Game
	Understanding Input Handling in Pyxel
	The Difference Between btn and btnp
	Common Input Constants

	Object-Oriented Approach in Pyxel
	Practice Time: Your First Pyxel Challenge
	Common Bugs to Watch Out For
	Conclusion and Resources for Further Quests

	Mapping Your Game World: Colors and Coordinates
	The Magic Palette: Pyxel's 16 Colors
	Pro Tip: Choosing the Right Color for Text

	The Cartographer's Grid: Pyxel's Coordinate System
	Combining Colors and Coordinates: A Simple Drawing
	Practice Time: Your Color and Coordinate Quest
	Common Bugs to Watch Out For
	Conclusion and Resources for Further Exploration

	The Artist's Tools: Drawing Primitives and Shapes
	What are Drawing Primitives?
	The Point: The Smallest Unit of Art
	The Line: Connecting the Dots
	The Rectangle: Building Blocks of Games
	The Circle: Perfect Rounds
	The Triangle: Adding Dimension
	Text: The Power of Words
	Creating a Simple UI with Shapes and Text
	Practice Time: Your Drawing Primitive Quest
	Common Bugs to Watch Out For
	Conclusion and Resources for Further Mastery

	The Power of Imagery: Loading and Using Sprites
	What are Sprites and Why Do We Need Them?
	The Pyxel Image Bank: Your Sprite Storage
	Loading Images: Two Simple Methods
	Method 1: Loading an External Image File
	Method 2: Using the Pyxel Editor

	Displaying Sprites with blt()
	Moving Sprites: Bringing Your Game to Life
	Transparency in Sprites
	Practice Time: Your First Sprite Quest
	Common Bugs to Watch Out For
	Conclusion and Resources for Further Exploration

	Mastering the Image Bank: Organizing Your Game's Visual Assets
	Organizing Your Image Bank Effectively
	Creating a Sprite Atlas: Named Sprites for Easy Reference
	Working with Multiple Image Banks
	Practice Time: Image Bank Organization Quest
	Common Bugs to Watch Out For
	Conclusion and Resources for Further Exploration

	Bringing Your World to Life: Basic Sprite Movement
	Why Movement Matters
	The Basic Movement Model
	Keyboard-Controlled Movement
	Keeping Sprites Within Bounds
	Movement with Acceleration and Deceleration
	Moving Multiple Sprites: Following Patterns
	Using blt() Instead of Shapes
	Creating a Simple Game: Collect the Coins
	Practice Time: Your Movement Quest
	Common Bugs to Watch Out For
	Conclusion and Resources for Further Exploration

	Mastering Player Input: Keyboard, Mouse, and Gamepad
	Why Input Matters: The Player's Connection
	Keyboard Input: The Classic Control Scheme
	btn() vs btnp(): Understanding the Difference
	Key Constants: The Magic Words
	Advanced Keyboard Techniques

	Mouse Input: Point and Click Adventures
	Enabling Mouse Input
	Reading Mouse Position and Clicks
	Button Detection: Clicking on UI Elements

	Gamepad Input: The Console Experience
	Reading Gamepad Buttons
	Gamepad Constants
	Two-Player Example

	Practice Time: Your Input Control Quest
	Common Bugs to Watch Out For
	Conclusion and Resources for Further Exploration

	The Art of Collision Detection: Making Your Game Interactive
	What is Collision Detection and Why Does It Matter?
	Types of Collision Detection
	Rectangle Collision: The Workhorse of Game Development
	Visualizing Collision Rectangles
	Circle Collision: Perfect for Round Objects
	Mixed Collision Types: Circle-Rectangle Collision
	Using Collision Detection in a Game: Coins and Obstacles
	Implementing Tile-Based Collision
	Collision Response: What Happens After a Collision?
	Sliding Along Walls
	Pushing Objects

	Performance Considerations
	1. Spatial Partitioning
	2. Broad Phase and Narrow Phase
	3. Collision Culling
	4. Custom Collision Shapes

	Practice Time: Your Collision Detection Quest
	Common Bugs to Watch Out For
	Conclusion and Resources for Further Exploration

	Bringing Sprites to Life: Animations and Flipping
	What are Sprite Animations?
	Frame-Based Animation: The Basics
	Creating a Walking Character Animation
	The Magic of Flipping Sprites
	Multi-directional Character with Animations
	Creating an Animation Manager
	Advanced Techniques
	1. Variable Animation Speed
	2. Tinting or Color Effects
	3. Transition Animations

	Practice Time: Animate Your Game World
	Common Bugs to Watch Out For
	Conclusion and Resources for Further Animation Learning

	Pyxel Commands Cheatsheet (Lessons 15a-15f)
	Initialization and Core Functions
	Input Handling
	Constants for Keys
	Drawing Primitives
	Sprite and Image Handling
	Image Bank Structure
	Colors
	Game Development Patterns
	Basic Game Structure
	Boundary Management
	Sprite Atlas Pattern

	Tips and Best Practices

